Shifted sine integral function
ssinint(
returns
the shifted
sine integral function X
)ssinint(X) = sinint(X) — pi/2
.
Depending on its arguments, ssinint
returns
floating-point or exact symbolic results.
Compute the shifted sine integral function for these numbers.
Because these numbers are not symbolic objects, ssinint
returns
floating-point results.
A = ssinint([- pi, 0, pi/2, pi, 1])
A = -3.4227 -1.5708 -0.2000 0.2811 -0.6247
Compute the shifted sine integral function for the numbers converted
to symbolic objects. For many symbolic (exact) numbers, ssinint
returns
unresolved symbolic calls.
symA = ssinint(sym([- pi, 0, pi/2, pi, 1]))
symA = [ - pi - ssinint(pi), -pi/2, ssinint(pi/2), ssinint(pi), ssinint(1)]
Use vpa
to approximate symbolic results
with floating-point numbers:
vpa(symA)
ans = [ -3.4227333787773627895923750617977,... -1.5707963267948966192313216916398,... -0.20003415864040813916164340325818,... 0.28114072518756955112973167851824,... -0.62471325642771360428996837781657]
Plot the shifted sine integral function on the interval from -4*pi
to 4*pi
.
syms x fplot(ssinint(x),[-4*pi 4*pi]) grid on
Many functions, such as diff
, int
,
and taylor
, can handle expressions containing ssinint
.
Find the first and second derivatives of the shifted sine integral function:
syms x diff(ssinint(x), x) diff(ssinint(x), x, x)
ans = sin(x)/x ans = cos(x)/x - sin(x)/x^2
Find the indefinite integral of the shifted sine integral function:
int(ssinint(x), x)
ans = cos(x) + x*ssinint(x)
Find the Taylor series expansion of ssinint(x)
:
taylor(ssinint(x), x)
ans = x^5/600 - x^3/18 + x - pi/2
[1] Gautschi, W. and W. F. Cahill. “Exponential Integral and Related Functions.” Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. (M. Abramowitz and I. A. Stegun, eds.). New York: Dover, 1972.