Hyperbolic sine integral function
sinhint(
returns
the hyperbolic
sine integral function of X
)X
.
Depending on its arguments, sinhint
returns
floating-point or exact symbolic results.
Compute the hyperbolic sine integral function for these numbers.
Because these numbers are not symbolic objects, sinhint
returns
floating-point results.
A = sinhint([-pi, -1, 0, pi/2, 2*pi])
A = -5.4696 -1.0573 0 1.8027 53.7368
Compute the hyperbolic sine integral function for the numbers
converted to symbolic objects. For many symbolic (exact) numbers, sinhint
returns
unresolved symbolic calls.
symA = sinhint(sym([-pi, -1, 0, pi/2, 2*pi]))
symA = [ -sinhint(pi), -sinhint(1), 0, sinhint(pi/2), sinhint(2*pi)]
Use vpa
to approximate symbolic results
with floating-point numbers:
vpa(symA)
ans = [ -5.4696403451153421506369580091277,... -1.0572508753757285145718423548959,... 0,... 1.802743198288293882089794577617,... 53.736750620859153990408011863262]
Plot the hyperbolic sine integral function on the interval from -2*pi
to 2*pi
.
syms x fplot(sinhint(x),[-2*pi 2*pi]) grid on
Many functions, such as diff
, int
,
and taylor
, can handle expressions containing sinhint
.
Find the first and second derivatives of the hyperbolic sine integral function:
syms x diff(sinhint(x), x) diff(sinhint(x), x, x)
ans = sinh(x)/x ans = cosh(x)/x - sinh(x)/x^2
Find the indefinite integral of the hyperbolic sine integral function:
int(sinhint(x), x)
ans = x*sinhint(x) - cosh(x)
Find the Taylor series expansion of sinhint(x)
:
taylor(sinhint(x), x)
ans = x^5/600 + x^3/18 + x
[1] Gautschi, W. and W. F. Cahill. “Exponential Integral and Related Functions.” Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. (M. Abramowitz and I. A. Stegun, eds.). New York: Dover, 1972.