Sine integral function
Depending on its arguments, sinint
returns
floating-point or exact symbolic results.
Compute the sine integral function for these numbers. Because
these numbers are not symbolic objects, sinint
returns
floating-point results.
A = sinint([- pi, 0, pi/2, pi, 1])
A = -1.8519 0 1.3708 1.8519 0.9461
Compute the sine integral function for the numbers converted
to symbolic objects. For many symbolic (exact) numbers, sinint
returns
unresolved symbolic calls.
symA = sinint(sym([- pi, 0, pi/2, pi, 1]))
symA = [ -sinint(pi), 0, sinint(pi/2), sinint(pi), sinint(1)]
Use vpa
to approximate symbolic results
with floating-point numbers:
vpa(symA)
ans = [ -1.851937051982466170361053370158,... 0,... 1.3707621681544884800696782883816,... 1.851937051982466170361053370158,... 0.94608307036718301494135331382318]
Plot the sine integral function on the interval from -4*pi
to 4*pi
.
syms x fplot(sinint(x),[-4*pi 4*pi]) grid on
Many functions, such as diff
, int
,
and taylor
, can handle expressions containing sinint
.
Find the first and second derivatives of the sine integral function:
syms x diff(sinint(x), x) diff(sinint(x), x, x)
ans = sin(x)/x ans = cos(x)/x - sin(x)/x^2
Find the indefinite integral of the sine integral function:
int(sinint(x), x)
ans = cos(x) + x*sinint(x)
Find the Taylor series expansion of sinint(x)
:
taylor(sinint(x), x)
ans = x^5/600 - x^3/18 + x
[1] Gautschi, W. and W. F. Cahill. “Exponential Integral and Related Functions.” Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. (M. Abramowitz and I. A. Stegun, eds.). New York: Dover, 1972.