Symbolic cotangent function
cot(
returns the cotangent function of X
)X
.
Depending on its arguments, cot
returns
floating-point or exact symbolic results.
Compute the cotangent function for these numbers. Because these
numbers are not symbolic objects, cot
returns
floating-point results.
A = cot([-2, -pi/2, pi/6, 5*pi/7, 11])
A = 0.4577 -0.0000 1.7321 -0.7975 -0.0044
Compute the cotangent function for the numbers converted to
symbolic objects. For many symbolic (exact) numbers, cot
returns
unresolved symbolic calls.
symA = cot(sym([-2, -pi/2, pi/6, 5*pi/7, 11]))
symA = [ -cot(2), 0, 3^(1/2), -cot((2*pi)/7), cot(11)]
Use vpa
to approximate symbolic results
with floating-point numbers:
vpa(symA)
ans = [ 0.45765755436028576375027741043205,... 0,... 1.7320508075688772935274463415059,... -0.79747338888240396141568825421443,... -0.0044257413313241136855482762848043]
Plot the cotangent function on the interval from to .
syms x fplot(cot(x),[-pi pi]) grid on
Many functions, such as diff
, int
, taylor
,
and rewrite
, can handle expressions containing cot
.
Find the first and second derivatives of the cotangent function:
syms x diff(cot(x), x) diff(cot(x), x, x)
ans = - cot(x)^2 - 1 ans = 2*cot(x)*(cot(x)^2 + 1)
Find the indefinite integral of the cotangent function:
int(cot(x), x)
ans = log(sin(x))
Find the Taylor series expansion of cot(x)
around x
= pi/2
:
taylor(cot(x), x, pi/2)
ans = pi/2 - x - (x - pi/2)^3/3 - (2*(x - pi/2)^5)/15
Rewrite the cotangent function in terms of the sine and cosine functions:
rewrite(cot(x), 'sincos')
ans = cos(x)/sin(x)
Rewrite the cotangent function in terms of the exponential function:
rewrite(cot(x), 'exp')
ans = (exp(x*2i)*1i + 1i)/(exp(x*2i) - 1)
cot
Functioncot
numerically evaluates these units
automatically: radian
, degree
,
arcmin
, arcsec
, and
revolution
.
Show this behavior by finding the cotangent of x
degrees and 2
radians.
u = symunit; syms x f = [x*u.degree 2*u.radian]; cotf = cot(f)
cotf = [ cot((pi*x)/180), cot(2)]
You can calculate cotf
by substituting for
x
using subs
and then using
double
or vpa
.