Symbolic cosine function
cos(
returns the cosine function of X
)X
.
Depending on its arguments, cos
returns
floating-point or exact symbolic results.
Compute the cosine function for these numbers. Because these
numbers are not symbolic objects, cos
returns
floating-point results.
A = cos([-2, -pi, pi/6, 5*pi/7, 11])
A = -0.4161 -1.0000 0.8660 -0.6235 0.0044
Compute the cosine function for the numbers converted to symbolic
objects. For many symbolic (exact) numbers, cos
returns
unresolved symbolic calls.
symA = cos(sym([-2, -pi, pi/6, 5*pi/7, 11]))
symA = [ cos(2), -1, 3^(1/2)/2, -cos((2*pi)/7), cos(11)]
Use vpa
to approximate symbolic results
with floating-point numbers:
vpa(symA)
ans = [ -0.41614683654714238699756822950076,... -1.0,... 0.86602540378443864676372317075294,... -0.62348980185873353052500488400424,... 0.0044256979880507857483550247239416]
Plot the cosine function on the interval from to .
syms x fplot(cos(x),[-4*pi 4*pi]) grid on
Many functions, such as diff
, int
, taylor
,
and rewrite
, can handle expressions containing cos
.
Find the first and second derivatives of the cosine function:
syms x diff(cos(x), x) diff(cos(x), x, x)
ans = -sin(x) ans = -cos(x)
Find the indefinite integral of the cosine function:
int(cos(x), x)
ans = sin(x)
Find the Taylor series expansion of cos(x)
:
taylor(cos(x), x)
ans = x^4/24 - x^2/2 + 1
Rewrite the cosine function in terms of the exponential function:
rewrite(cos(x), 'exp')
ans = exp(-x*1i)/2 + exp(x*1i)/2
cos
Functioncos
numerically evaluates these units
automatically: radian
, degree
,
arcmin
, arcsec
, and
revolution
.
Show this behavior by finding the cosine of x
degrees and
2
radians.
u = symunit; syms x f = [x*u.degree 2*u.radian]; cosinf = cos(f)
cosinf = [ cos((pi*x)/180), cos(2)]
You can calculate cosinf
by substituting for
x
using subs
and then using
double
or vpa
.