Symbolic inverse cosecant function
acsc(
returns the inverse cosecant function
(arccosecant function) of X
)X
. All angles are in radians.
For real values of X
in intervals
[-Inf,-1]
and [1,Inf]
,
acsc
returns real values in the interval
[-pi/2,pi/2]
.
For real values of X
in the interval
[-1,1]
and for complex values of
X
, acsc
returns complex
values with the real parts in the interval
[-pi/2,pi/2]
.
Depending on its arguments, acsc
returns
floating-point or exact symbolic results.
Compute the inverse cosecant function for these numbers. Because
these numbers are not symbolic objects, acsc
returns
floating-point results.
A = acsc([-2, 0, 2/sqrt(3), 1/2, 1, 5])
A = -0.5236 + 0.0000i 1.5708 - Infi 1.0472 + 0.0000i 1.5708... - 1.3170i 1.5708 + 0.0000i 0.2014 + 0.0000i
Compute the inverse cosecant function for the numbers converted
to symbolic objects. For many symbolic (exact) numbers, acsc
returns
unresolved symbolic calls.
symA = acsc(sym([-2, 0, 2/sqrt(3), 1/2, 1, 5]))
symA = [ -pi/6, Inf, pi/3, asin(2), pi/2, asin(1/5)]
Use vpa
to approximate symbolic results
with floating-point numbers:
vpa(symA)
ans = [ -0.52359877559829887307710723054658,... Inf,... 1.0471975511965977461542144610932,... 1.5707963267948966192313216916398... - 1.3169578969248165734029498707969i,... 1.5707963267948966192313216916398,... 0.20135792079033079660099758712022]
Plot the inverse cosecant function on the interval from -10 to 10.
syms x fplot(acsc(x),[-10 10]) grid on
Many functions, such as diff
, int
, taylor
,
and rewrite
, can handle expressions containing acsc
.
Find the first and second derivatives of the inverse cosecant function:
syms x diff(acsc(x), x) diff(acsc(x), x, x)
ans = -1/(x^2*(1 - 1/x^2)^(1/2)) ans = 2/(x^3*(1 - 1/x^2)^(1/2)) + 1/(x^5*(1 - 1/x^2)^(3/2))
Find the indefinite integral of the inverse cosecant function:
int(acsc(x), x)
ans = x*asin(1/x) + log(x + (x^2 - 1)^(1/2))*sign(x)
Find the Taylor series expansion of acsc(x)
around x
= Inf
:
taylor(acsc(x), x, Inf)
ans = 1/x + 1/(6*x^3) + 3/(40*x^5)
Rewrite the inverse cosecant function in terms of the natural logarithm:
rewrite(acsc(x), 'log')
ans = -log(1i/x + (1 - 1/x^2)^(1/2))*1i