Inverse 1-D lifting wavelet transform
X = ilwt(AD_In_Place,W)
X = ilwt(CA,CD,W)
X = ilwt(AD_In_Place,W,LEVEL)
X
= ILWT(CA,CD,W,LEVEL)
X = ilwt(AD_In_Place,W,LEVEL,'typeDEC',typeDEC)
X
= ilwt(CA,CD,W,LEVEL,'typeDEC',typeDEC)
ilwt
performs a 1-D
lifting wavelet reconstruction with respect to a particular lifted
wavelet that you specify.
X = ilwt(AD_In_Place,W)
computes the reconstructed
vector X
using the approximation and detail coefficients
vector AD_In_Place
obtained by a lifting wavelet
reconstruction. W
is a lifted wavelet name (see liftwave
).
X = ilwt(CA,CD,W)
computes the reconstructed
vector X
using the approximation coefficients vector CA
and
detail coefficients vector CD
obtained by a lifting
wavelet reconstruction.
X = ilwt(AD_In_Place,W,LEVEL)
or X
= ILWT(CA,CD,W,LEVEL)
computes the lifting wavelet reconstruction,
at level LEVEL
.
X = ilwt(AD_In_Place,W,LEVEL,'typeDEC',typeDEC)
or X
= ilwt(CA,CD,W,LEVEL,'typeDEC',typeDEC)
with typeDEC
= 'w'
or 'wp'
computes the wavelet or
the wavelet packet decomposition using lifting, at level LEVEL
.
Instead of a lifted wavelet name, you may use the associated
lifting scheme LS
: X = ilwt(...,LS,...)
instead
of X = ILWT(...,W,...)
.
For more information about lifting schemes, see lsinfo
.
% Start from the Haar wavelet and get the % corresponding lifting scheme. lshaar = liftwave('haar'); % Add a primal ELS to the lifting scheme. els = {'p',[-0.125 0.125],0}; lsnew = addlift(lshaar,els); % Perform LWT at level 1 of a simple signal. x = 1:8; [cA,cD] = lwt(x,lsnew); % Perform integer LWT of the same signal. lshaarInt = liftwave('haar','int2int'); lsnewInt = addlift(lshaarInt,els); [cAint,cDint] = lwt(x,lsnewInt); % Invert the two transforms. xRec = ilwt(cA,cD,lsnew); err = max(max(abs(x-xRec))) err = 4.4409e-016 xRecInt = ilwt(cAint,cDint,lsnewInt); errInt = max(max(abs(x-xRecInt))) errInt = 0