Lifting schemes
LS = liftwave(WNAME)
LS = liftwave(WNAME,'Int2Int')
LS = liftwave(WNAME)
returns the lifting
scheme associated with the wavelet specified by WNAME
. LS
is
a structure, not an integer, and used by lwt
, ilwt
, lwt2
,
etc.
LS = liftwave(WNAME,'Int2Int')
performs
an integer to integer wavelet transform. Using 'Int2Int'
produces
an LS
such that when you use [CA,CD] =
lwt(X,LS)
or Y = lwt(X,LS)
and X
is
a vector of integers, the resulting CA
, CD
,
and Y
are vectors of integers. If you omit 'Int2Int'
then lwt
produces vectors of real numbers.
The valid values for WNAME
are
WNAME Values | ||||||
---|---|---|---|---|---|---|
'lazy' | ||||||
'haar' | ||||||
'db1' , 'db2' , 'db3' , 'db4' , 'db5' , 'db6' , 'db7' , 'db8' | ||||||
'sym2' , 'sym3' , 'sym4' , 'sym5' , 'sym6' , 'sym7' , 'sym8' | ||||||
Cohen-Daubechies-Feauveau wavelets
| ||||||
'biorX.Y' | ||||||
'rbioX.Y' | ||||||
'bs3' | ||||||
'rbs3' | ||||||
'9.7' | ||||||
'r9.7' |
For more information about lifting schemes, see lsinfo
.
% Start from the db2 wavelet and get the % corresponding lifting scheme. lsdb2 = liftwave('db2'); % Visualize the obtained lifting scheme. displs(lsdb2); lsdb2 = {... 'd' [ -1.73205081] [0] 'p' [ -0.06698730 0.43301270] [1] 'd' [ 1.00000000] [-1] [ 1.93185165] [ 0.51763809] [] };