Create DeepLab v3+ convolutional neural network for semantic image segmentation
returns a DeepLab v3+ layer with the specified base network, number of classes, and image
size.layerGraph
= deeplabv3plusLayers(imageSize
,numClasses
,network
)
additionally sets the downsampling factor (output stride) [1] to either
layerGraph
= deeplabv3plusLayers(___,'DownsamplingFactor',value)8
or 16
. The downsampling factor sets the amount the
encoder section of DeepLav v3+ downsamples the input image.
When you use either the xception
(Deep Learning Toolbox) or
mobilenetv2
(Deep Learning Toolbox) base
networks to create a DeepLab v3+ network, depth separable convolutions are used in the
atrous spatial pyramid pooling (ASPP) and decoder subnetworks. For all other base
networks, convolution layers are used.
This implementation of DeepLab v3+ does not include a global average pooling layer in the ASPP.
[1] Chen, L., Y. Zhu, G. Papandreou, F. Schroff, and H. Adam. "Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation." Computer Vision — ECCV 2018, 833-851. Munic, Germany: ECCV, 2018.
pixelClassificationLayer
| layerGraph
(Deep Learning Toolbox)deeplabv3plusLayers
| fcnLayers
| segnetLayers
| semanticseg
| unetLayers
| trainNetwork
(Deep Learning Toolbox)