Computer Vision Toolbox™ supports several approaches for image classification, object detection, and recognition, including:
Deep learning and Convolutional neural networks (CNNs)
Bag of features
Template matching
Blob analysis
Viola-Jones algorithm
Interactive apps for ground truth labeling
A CNN is a popular deep learning architecture that automatically learns useful feature representations directly from image data. Bag of features encodes image features into a compact representation suitable for image classification and image retrieval. Template matching uses a small image, or template, to find matching regions in a larger image. Blob analysis uses segmentation and blob properties to identify objects of interest. The Viola-Jones algorithm uses Haar-like features and a cascade of classifiers to identify objects, including faces, noses, and eyes. You can train this classifier to recognize other objects.