Complementary complete elliptic integral of the first kind
ellipticCK(
returns the complementary complete elliptic integral
of the first kind.m
)
Compute the complementary complete elliptic integrals of the first kind for these numbers. Because these numbers are not symbolic objects, you get floating-point results.
s = [ellipticCK(1/2), ellipticCK(pi/4), ellipticCK(1), ellipticCK(inf)]
s = 1.8541 1.6671 1.5708 NaN
Compute the complete elliptic integrals of the first kind for
the same numbers converted to symbolic objects. For most symbolic
(exact) numbers, ellipticCK
returns unresolved
symbolic calls.
s = [ellipticCK(sym(1/2)), ellipticCK(sym(pi/4)),... ellipticCK(sym(1)), ellipticCK(sym(inf))]
s = [ ellipticCK(1/2), ellipticCK(pi/4), pi/2, ellipticCK(Inf)]
Use vpa
to approximate
this result with floating-point numbers:
vpa(s, 10)
ans = [ 1.854074677, 1.667061338, 1.570796327, NaN]
Differentiate these expressions involving the complementary complete elliptic integral of the first kind:
syms m diff(ellipticCK(m)) diff(ellipticCK(m^2), m, 2)
ans = ellipticCE(m)/(2*m*(m - 1)) - ellipticCK(m)/(2*m - 2) ans = (2*(ellipticCE(m^2)/(2*m^2 - 2) -... ellipticCK(m^2)/(2*m^2 - 2)))/(m^2 - 1) -... (2*ellipticCE(m^2))/(m^2 - 1)^2 -... (2*ellipticCK(m^2))/(2*m^2 - 2) +... (8*m^2*ellipticCK(m^2))/(2*m^2 - 2)^2 +... (2*m*((2*m*ellipticCK(m^2))/(2*m^2 - 2) -... ellipticCE(m^2)/(m*(m^2 - 1))))/(2*m^2 - 2) -... ellipticCE(m^2)/(m^2*(m^2 - 1))
Here, ellipticCE
represents the complementary
complete elliptic integral of the second kind.
Call ellipticCK
for this symbolic matrix.
When the input argument is a matrix, ellipticCK
computes
the complementary complete elliptic integral of the first kind for
each element.
ellipticCK(sym([pi/6 pi/4; pi/3 pi/2]))
ans = [ ellipticCK(pi/6), ellipticCK(pi/4)] [ ellipticCK(pi/3), ellipticCK(pi/2)]
Plot complementary complete elliptic integral of first kind.
syms m fplot(ellipticCK(m),[0.1 5]) title('Complementary complete elliptic integral of the first kind') ylabel('ellipticCK(m)') grid on hold off
ellipticK
returns floating-point
results for numeric arguments that are not symbolic objects.
For most symbolic (exact) numbers, ellipticCK
returns
unresolved symbolic calls. You can approximate such results with floating-point
numbers using the vpa
function.
If m
is a vector or a matrix,
then ellipticCK(m)
returns the complementary complete
elliptic integral of the first kind, evaluated for each element of m
.
[1] Milne-Thomson, L. M. “Elliptic Integrals.” Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. (M. Abramowitz and I. A. Stegun, eds.). New York: Dover, 1972.
ellipke
| ellipticCE
| ellipticCPi
| ellipticE
| ellipticF
| ellipticK
| ellipticPi
| vpa