Complementary complete elliptic integral of the second kind
ellipticCE(
returns the complementary complete elliptic integral
of the second kind.m
)
Compute the complementary complete elliptic integrals of the second kind for these numbers. Because these numbers are not symbolic objects, you get floating-point results.
s = [ellipticCE(0), ellipticCE(pi/4),... ellipticCE(1), ellipticCE(pi/2)]
s = 1.0000 1.4828 1.5708 1.7753
Compute the complementary complete elliptic integrals of the
second kind for the same numbers converted to symbolic objects. For
most symbolic (exact) numbers, ellipticCE
returns
unresolved symbolic calls.
s = [ellipticCE(sym(0)), ellipticCE(sym(pi/4)),... ellipticCE(sym(1)), ellipticCE(sym(pi/2))]
s = [ 1, ellipticCE(pi/4), pi/2, ellipticCE(pi/2)]
Use vpa
to approximate
this result with floating-point numbers:
vpa(s, 10)
ans = [ 1.0, 1.482786927, 1.570796327, 1.775344699]
Call ellipticCE
for this symbolic matrix.
When the input argument is a matrix, ellipticCE
computes
the complementary complete elliptic integral of the second kind for
each element.
ellipticCE(sym([pi/6 pi/4; pi/3 pi/2]))
ans = [ ellipticCE(pi/6), ellipticCE(pi/4)] [ ellipticCE(pi/3), ellipticCE(pi/2)]
Differentiate these expressions involving the complementary complete elliptic integral of the second kind:
syms m diff(ellipticCE(m)) diff(ellipticCE(m^2), m, 2)
ans = ellipticCE(m)/(2*m - 2) - ellipticCK(m)/(2*m - 2) ans = (2*ellipticCE(m^2))/(2*m^2 - 2) -... (2*ellipticCK(m^2))/(2*m^2 - 2) +... 2*m*(((2*m*ellipticCK(m^2))/(2*m^2 - 2) -... ellipticCE(m^2)/(m*(m^2 - 1)))/(2*m^2 - 2) +... (2*m*(ellipticCE(m^2)/(2*m^2 - 2) -... ellipticCK(m^2)/(2*m^2 - 2)))/(2*m^2 - 2) -... (4*m*ellipticCE(m^2))/(2*m^2 - 2)^2 +... (4*m*ellipticCK(m^2))/(2*m^2 - 2)^2)
Here, ellipticCK
represents the complementary
complete elliptic integral of the first kind.
Plot the complementary complete elliptic integral of the second kind.
syms m fplot(ellipticCE(m)) title('Complementary complete elliptic integral of the second kind') ylabel('ellipticCE(m)') grid on
ellipticCE
returns floating-point
results for numeric arguments that are not symbolic objects.
For most symbolic (exact) numbers, ellipticCE
returns
unresolved symbolic calls. You can approximate such results with floating-point
numbers using vpa
.
If m
is a vector or a matrix,
then ellipticCE(m)
returns the complementary complete
elliptic integral of the second kind, evaluated for each element of m
.
[1] Milne-Thomson, L. M. “Elliptic Integrals.” Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. (M. Abramowitz and I. A. Stegun, eds.). New York: Dover, 1972.
ellipke
| ellipticCK
| ellipticCPi
| ellipticE
| ellipticF
| ellipticK
| ellipticPi
| vpa