Fit Gaussian kernel classification model using random feature expansion
fitckernel
trains or cross-validates a binary Gaussian
kernel classification model for nonlinear classification.
fitckernel
is more practical for big data applications that
have large training sets but can also be applied to smaller data sets that fit in
memory.
fitckernel
maps data in a low-dimensional space into a
high-dimensional space, then fits a linear model in the high-dimensional space by
minimizing the regularized objective function. Obtaining the linear model in the
high-dimensional space is equivalent to applying the Gaussian kernel to the model in the
low-dimensional space. Available linear classification models include regularized
support vector machine (SVM) and logistic regression models.
To train a nonlinear SVM model for binary classification of in-memory data, see
fitcsvm
.
returns a binary Gaussian kernel classification model trained using the
predictor data in Mdl
= fitckernel(X
,Y
)X
and the corresponding class labels in
Y
. The fitckernel
function maps
the predictors in a low-dimensional space into a high-dimensional space, then
fits a binary SVM model to the transformed predictors and class labels. This
linear model is equivalent to the Gaussian kernel classification model in the
low-dimensional space.
returns a kernel classification model Mdl
= fitckernel(Tbl
,ResponseVarName
)Mdl
trained using the
predictor variables contained in the table Tbl
and the
class labels in Tbl.ResponseVarName
.
specifies options using one or more name-value pair arguments in addition to any
of the input argument combinations in previous syntaxes. For example, you can
implement logistic regression, specify the number of dimensions of the expanded
space, or specify to cross-validate.Mdl
= fitckernel(___,Name,Value
)
[
also returns the hyperparameter optimization results
Mdl
,FitInfo
,HyperparameterOptimizationResults
] = fitckernel(___)HyperparameterOptimizationResults
when you optimize
hyperparameters by using the 'OptimizeHyperparameters'
name-value pair argument.
Train a binary kernel classification model using SVM.
Load the ionosphere
data set. This data set has 34 predictors and 351 binary responses for radar returns, either bad ('b'
) or good ('g'
).
load ionosphere
[n,p] = size(X)
n = 351
p = 34
resp = unique(Y)
resp = 2x1 cell
{'b'}
{'g'}
Train a binary kernel classification model that identifies whether the radar return is bad ('b'
) or good ('g'
). Extract a fit summary to determine how well the optimization algorithm fits the model to the data.
rng('default') % For reproducibility [Mdl,FitInfo] = fitckernel(X,Y)
Mdl = ClassificationKernel ResponseName: 'Y' ClassNames: {'b' 'g'} Learner: 'svm' NumExpansionDimensions: 2048 KernelScale: 1 Lambda: 0.0028 BoxConstraint: 1 Properties, Methods
FitInfo = struct with fields:
Solver: 'LBFGS-fast'
LossFunction: 'hinge'
Lambda: 0.0028
BetaTolerance: 1.0000e-04
GradientTolerance: 1.0000e-06
ObjectiveValue: 0.2604
GradientMagnitude: 0.0028
RelativeChangeInBeta: 8.2512e-05
FitTime: 0.1504
History: []
Mdl
is a ClassificationKernel
model. To inspect the in-sample classification error, you can pass Mdl
and the training data or new data to the loss
function. Or, you can pass Mdl
and new predictor data to the predict
function to predict class labels for new observations. You can also pass Mdl
and the training data to the resume
function to continue training.
FitInfo
is a structure array containing optimization information. Use FitInfo
to determine whether optimization termination measurements are satisfactory.
For better accuracy, you can increase the maximum number of optimization iterations ('IterationLimit'
) and decrease the tolerance values ('BetaTolerance'
and 'GradientTolerance'
) by using the name-value pair arguments. Doing so can improve measures like ObjectiveValue
and RelativeChangeInBeta
in FitInfo
. You can also optimize model parameters by using the 'OptimizeHyperparameters'
name-value pair argument.
Load the ionosphere
data set. This data set has 34 predictors and 351 binary responses for radar returns, either bad ('b'
) or good ('g'
).
load ionosphere rng('default') % For reproducibility
Cross-validate a binary kernel classification model. By default, the software uses 10-fold cross-validation.
CVMdl = fitckernel(X,Y,'CrossVal','on')
CVMdl = ClassificationPartitionedKernel CrossValidatedModel: 'Kernel' ResponseName: 'Y' NumObservations: 351 KFold: 10 Partition: [1x1 cvpartition] ClassNames: {'b' 'g'} ScoreTransform: 'none' Properties, Methods
numel(CVMdl.Trained)
ans = 10
CVMdl
is a ClassificationPartitionedKernel
model. Because fitckernel
implements 10-fold cross-validation, CVMdl
contains 10 ClassificationKernel
models that the software trains on training-fold (in-fold) observations.
Estimate the cross-validated classification error.
kfoldLoss(CVMdl)
ans = 0.0940
The classification error rate is approximately 9%.
Optimize hyperparameters automatically using the 'OptimizeHyperparameters'
name-value pair argument.
Load the ionosphere
data set. This data set has 34 predictors and 351 binary responses for radar returns, either bad ('b'
) or good ('g'
).
load ionosphere
Find hyperparameters that minimize five-fold cross-validation loss by using automatic hyperparameter optimization. Specify 'OptimizeHyperparameters'
as 'auto'
so that fitckernel
finds optimal values of the 'KernelScale'
and 'Lambda'
name-value pair arguments. For reproducibility, set the random seed and use the 'expected-improvement-plus'
acquisition function.
rng('default') [Mdl,FitInfo,HyperparameterOptimizationResults] = fitckernel(X,Y,'OptimizeHyperparameters','auto',... 'HyperparameterOptimizationOptions',struct('AcquisitionFunctionName','expected-improvement-plus'))
|=====================================================================================================| | Iter | Eval | Objective | Objective | BestSoFar | BestSoFar | KernelScale | Lambda | | | result | | runtime | (observed) | (estim.) | | | |=====================================================================================================| | 1 | Best | 0.35897 | 1.5197 | 0.35897 | 0.35897 | 64.836 | 4.4811e-06 |
| 2 | Accept | 0.35897 | 1.2099 | 0.35897 | 0.35897 | 0.036335 | 0.015885 |
| 3 | Accept | 0.39601 | 0.94951 | 0.35897 | 0.36053 | 0.0022147 | 6.8254e-06 |
| 4 | Accept | 0.35897 | 0.43184 | 0.35897 | 0.35898 | 5.1259 | 0.28097 |
| 5 | Accept | 0.35897 | 0.71153 | 0.35897 | 0.35897 | 0.24853 | 0.10828 |
| 6 | Accept | 0.35897 | 0.3378 | 0.35897 | 0.35897 | 885.09 | 0.00057316 |
| 7 | Best | 0.10826 | 0.78216 | 0.10826 | 0.10833 | 8.0346 | 0.0048286 |
| 8 | Best | 0.076923 | 1.1038 | 0.076923 | 0.076999 | 7.0902 | 0.0034068 |
| 9 | Accept | 0.091168 | 1.1351 | 0.076923 | 0.077059 | 9.1504 | 0.0020604 |
| 10 | Best | 0.062678 | 1.0337 | 0.062678 | 0.062723 | 3.5487 | 0.0025912 |
| 11 | Accept | 0.062678 | 0.82695 | 0.062678 | 0.062741 | 2.3869 | 0.003321 |
| 12 | Accept | 0.41026 | 1.1713 | 0.062678 | 0.062536 | 0.14075 | 0.0022499 |
| 13 | Accept | 0.062678 | 1.0394 | 0.062678 | 0.062532 | 3.4215 | 0.0036803 |
| 14 | Accept | 0.062678 | 0.86413 | 0.062678 | 0.061956 | 3.2928 | 0.0030533 |
| 15 | Best | 0.05698 | 0.92048 | 0.05698 | 0.057204 | 5.0598 | 0.0025499 |
| 16 | Accept | 0.062678 | 1.3299 | 0.05698 | 0.057186 | 5.3401 | 0.0015096 |
| 17 | Accept | 0.05698 | 1.1074 | 0.05698 | 0.057118 | 1.813 | 0.0069209 |
| 18 | Accept | 0.059829 | 1.9257 | 0.05698 | 0.057092 | 1.5122 | 0.0046637 |
| 19 | Accept | 0.059829 | 1.4774 | 0.05698 | 0.05718 | 1.9277 | 0.0056364 |
| 20 | Accept | 0.065527 | 1.1653 | 0.05698 | 0.057189 | 1.4064 | 0.0094306 |
|=====================================================================================================| | Iter | Eval | Objective | Objective | BestSoFar | BestSoFar | KernelScale | Lambda | | | result | | runtime | (observed) | (estim.) | | | |=====================================================================================================| | 21 | Accept | 0.05698 | 1.7577 | 0.05698 | 0.057033 | 5.1719 | 0.0023614 |
| 22 | Best | 0.054131 | 3.0065 | 0.054131 | 0.054176 | 1.9618 | 6.5704e-05 |
| 23 | Best | 0.042735 | 1.9608 | 0.042735 | 0.042763 | 1.9463 | 1.0169e-05 |
| 24 | Accept | 0.082621 | 1.1503 | 0.042735 | 0.042775 | 1.0661 | 1.3245e-05 |
| 25 | Accept | 0.054131 | 3.5069 | 0.042735 | 0.042789 | 3.288 | 2.0035e-05 |
| 26 | Accept | 0.062678 | 1.521 | 0.042735 | 0.042769 | 2.657 | 3.0334e-06 |
| 27 | Accept | 0.059829 | 1.5397 | 0.042735 | 0.043054 | 2.0381 | 1.9791e-05 |
| 28 | Accept | 0.042735 | 2.2986 | 0.042735 | 0.042764 | 3.5043 | 0.0001237 |
| 29 | Accept | 0.054131 | 1.1176 | 0.042735 | 0.042764 | 1.3897 | 3.2288e-06 |
| 30 | Accept | 0.062678 | 2.0762 | 0.042735 | 0.042792 | 2.2414 | 0.0002259 |
__________________________________________________________ Optimization completed. MaxObjectiveEvaluations of 30 reached. Total function evaluations: 30 Total elapsed time: 79.0761 seconds Total objective function evaluation time: 40.9783 Best observed feasible point: KernelScale Lambda ___________ __________ 1.9463 1.0169e-05 Observed objective function value = 0.042735 Estimated objective function value = 0.043106 Function evaluation time = 1.9608 Best estimated feasible point (according to models): KernelScale Lambda ___________ _________ 3.5043 0.0001237 Estimated objective function value = 0.042792 Estimated function evaluation time = 2.4052
Mdl = ClassificationKernel ResponseName: 'Y' ClassNames: {'b' 'g'} Learner: 'svm' NumExpansionDimensions: 2048 KernelScale: 3.5043 Lambda: 1.2370e-04 BoxConstraint: 23.0320 Properties, Methods
FitInfo = struct with fields:
Solver: 'LBFGS-fast'
LossFunction: 'hinge'
Lambda: 1.2370e-04
BetaTolerance: 1.0000e-04
GradientTolerance: 1.0000e-06
ObjectiveValue: 0.0426
GradientMagnitude: 0.0028
RelativeChangeInBeta: 8.9154e-05
FitTime: 0.4565
History: []
HyperparameterOptimizationResults = BayesianOptimization with properties: ObjectiveFcn: @createObjFcn/inMemoryObjFcn VariableDescriptions: [4x1 optimizableVariable] Options: [1x1 struct] MinObjective: 0.0427 XAtMinObjective: [1x2 table] MinEstimatedObjective: 0.0428 XAtMinEstimatedObjective: [1x2 table] NumObjectiveEvaluations: 30 TotalElapsedTime: 79.0761 NextPoint: [1x2 table] XTrace: [30x2 table] ObjectiveTrace: [30x1 double] ConstraintsTrace: [] UserDataTrace: {30x1 cell} ObjectiveEvaluationTimeTrace: [30x1 double] IterationTimeTrace: [30x1 double] ErrorTrace: [30x1 double] FeasibilityTrace: [30x1 logical] FeasibilityProbabilityTrace: [30x1 double] IndexOfMinimumTrace: [30x1 double] ObjectiveMinimumTrace: [30x1 double] EstimatedObjectiveMinimumTrace: [30x1 double]
For big data, the optimization procedure can take a long time. If the data set is too large to run the optimization procedure, you can try to optimize the parameters using only partial data. Use the datasample
function and specify 'Replace','false'
to sample data without replacement.
X
— Predictor dataPredictor data, specified as an n-by-p numeric matrix, where n is the number of observations and p is the number of predictors.
The length of Y
and the number of observations in
X
must be equal.
Data Types: single
| double
Y
— Class labelsClass labels, specified as a categorical, character, or string array, logical or numeric vector, or cell array of character vectors.
fitckernel
supports only binary
classification. Either Y
must contain
exactly two distinct classes, or you must specify two classes
for training by using the ClassNames
name-value pair argument.
If Y
is a character array, then each
element must correspond to one row of the array.
The length of Y
must be equal to the number
of observations in X
or
Tbl
.
A good practice is to specify the class order by using the
ClassNames
name-value pair
argument.
Data Types: categorical
| char
| string
| logical
| single
| double
| cell
Tbl
— Sample dataSample data used to train the model, specified as a table. Each row of Tbl
corresponds to one observation, and each column corresponds to one predictor variable.
Optionally, Tbl
can contain one additional column for the response
variable. Multicolumn variables and cell arrays other than cell arrays of character
vectors are not allowed.
If Tbl
contains the response variable, and you want to use all remaining
variables in Tbl
as predictors, then specify the response variable by
using ResponseVarName
.
If Tbl
contains the response variable, and you want to use only a subset of
the remaining variables in Tbl
as predictors, then specify a formula
by using formula
.
If Tbl
does not contain the response variable, then specify a response
variable by using Y
. The length of the response variable and the
number of rows in Tbl
must be equal.
Data Types: table
ResponseVarName
— Response variable nameTbl
Response variable name, specified as the name of a variable in
Tbl
.
You must specify ResponseVarName
as a character vector or string scalar.
For example, if the response variable Y
is
stored as Tbl.Y
, then specify it as
'Y'
. Otherwise, the software
treats all columns of Tbl
, including
Y
, as predictors when training
the model.
The response variable must be a categorical, character, or string array, a logical or numeric
vector, or a cell array of character vectors. If
Y
is a character array, then each
element of the response variable must correspond to one row of
the array.
A good practice is to specify the order of the classes by using the
ClassNames
name-value pair
argument.
Data Types: char
| string
formula
— Explanatory model of response variable and subset of predictor variablesExplanatory model of the response variable and a subset of the predictor variables,
specified as a character vector or string scalar in the form
'Y~X1+X2+X3'
. In this form, Y
represents the
response variable, and X1
, X2
, and
X3
represent the predictor variables.
To specify a subset of variables in Tbl
as predictors for
training the model, use a formula. If you specify a formula, then the software does not
use any variables in Tbl
that do not appear in
formula
.
The variable names in the formula must be both variable names in Tbl
(Tbl.Properties.VariableNames
) and valid MATLAB® identifiers.
You can verify the variable names in Tbl
by using the isvarname
function. The following code returns logical 1
(true
) for each variable that has a valid variable name.
cellfun(@isvarname,Tbl.Properties.VariableNames)
Tbl
are not valid, then convert them by using the
matlab.lang.makeValidName
function.Tbl.Properties.VariableNames = matlab.lang.makeValidName(Tbl.Properties.VariableNames);
Data Types: char
| string
Note
The software treats NaN
, empty character vector
(''
), empty string (""
),
<missing>
, and <undefined>
elements as missing values, and removes observations with any of these characteristics:
Missing value in the response variable
At least one missing value in a predictor observation (row in
X
or Tbl
)
NaN
value or 0
weight
('Weights'
)
Specify optional
comma-separated pairs of Name,Value
arguments. Name
is
the argument name and Value
is the corresponding value.
Name
must appear inside quotes. You can specify several name and value
pair arguments in any order as
Name1,Value1,...,NameN,ValueN
.
Mdl =
fitckernel(X,Y,'Learner','logistic','NumExpansionDimensions',2^15,'KernelScale','auto')
implements logistic regression after mapping the predictor data to the
2^15
dimensional space using feature expansion with a kernel
scale parameter selected by a heuristic procedure.Note
You cannot use any cross-validation name-value pair argument along with the
'OptimizeHyperparameters'
name-value pair argument. You can modify
the cross-validation for 'OptimizeHyperparameters'
only by using the
'HyperparameterOptimizationOptions'
name-value pair
argument.
'Learner'
— Linear classification model type'svm'
(default) | 'logistic'
Linear classification model type, specified as the comma-separated pair consisting of 'Learner'
and 'svm'
or 'logistic'
.
In the following table,
x is an observation (row vector) from p predictor variables.
is a transformation of an observation (row vector) for feature expansion. T(x) maps x in to a high-dimensional space ().
β is a vector of m coefficients.
b is the scalar bias.
Value | Algorithm | Response Range | Loss Function |
---|---|---|---|
'svm' | Support vector machine | y ∊ {–1,1}; 1 for the positive class and –1 otherwise | Hinge: |
'logistic' | Logistic regression | Same as 'svm' | Deviance (logistic): |
Example: 'Learner','logistic'
'NumExpansionDimensions'
— Number of dimensions of expanded space'auto'
(default) | positive integerNumber of dimensions of the expanded space, specified as the comma-separated
pair consisting of 'NumExpansionDimensions'
and
'auto'
or a positive integer. For
'auto'
, the fitckernel
function selects the number of dimensions using
2.^ceil(min(log2(p)+5,15))
, where
p
is the number of predictors.
For details, see Random Feature Expansion.
Example: 'NumExpansionDimensions',2^15
Data Types: char
| string
| single
| double
'KernelScale'
— Kernel scale parameter1
(default) | 'auto'
| positive scalarKernel scale parameter, specified as the comma-separated pair consisting of
'KernelScale'
and 'auto'
or a positive scalar.
The software obtains a random basis for random feature expansion by using the kernel
scale parameter. For details, see Random Feature Expansion.
If you specify 'auto'
, then the software selects an appropriate kernel
scale parameter using a heuristic procedure. This heuristic procedure uses subsampling,
so estimates can vary from one call to another. Therefore, to reproduce results, set a
random number seed by using rng
before training.
Example: 'KernelScale','auto'
Data Types: char
| string
| single
| double
'BoxConstraint'
— Box constraintBox constraint, specified as the comma-separated pair consisting of
'BoxConstraint'
and a positive scalar.
This argument is valid only when 'Learner'
is
'svm'
(default) and you do not
specify a value for the regularization term strength
'Lambda'
. You can specify
either 'BoxConstraint'
or
'Lambda'
because the box
constraint (C) and the
regularization term strength (λ)
are related by C =
1/(λn), where n is the
number of observations.
Example: 'BoxConstraint',100
Data Types: single
| double
'Lambda'
— Regularization term strength'auto'
(default) | nonnegative scalarRegularization term strength, specified as the comma-separated pair consisting of 'Lambda'
and 'auto'
or a nonnegative scalar.
For 'auto'
, the value of 'Lambda'
is
1/n, where n is the number of
observations.
You can specify either 'BoxConstraint'
or 'Lambda'
because the box constraint (C) and the regularization term strength (λ) are related by C = 1/(λn).
Example: 'Lambda',0.01
Data Types: char
| string
| single
| double
'CrossVal'
— Flag to train cross-validated classifier'off'
(default) | 'on'
Flag to train a cross-validated classifier, specified as the
comma-separated pair consisting of 'Crossval'
and
'on'
or 'off'
.
If you specify 'on'
, then the software trains a
cross-validated classifier with 10 folds.
You can override this cross-validation setting using the
CVPartition
, Holdout
,
KFold
, or Leaveout
name-value pair argument. You can use only one cross-validation
name-value pair argument at a time to create a cross-validated
model.
Example: 'Crossval','on'
'CVPartition'
— Cross-validation partition[]
(default) | cvpartition
partition objectCross-validation partition, specified as the comma-separated pair consisting of
'CVPartition'
and a cvpartition
partition
object created by cvpartition
. The partition object
specifies the type of cross-validation and the indexing for the training and validation
sets.
To create a cross-validated model, you can use one of these four name-value pair arguments
only: CVPartition
, Holdout
,
KFold
, or Leaveout
.
Example: Suppose you create a random partition for 5-fold cross-validation on 500
observations by using cvp = cvpartition(500,'KFold',5)
. Then, you can
specify the cross-validated model by using
'CVPartition',cvp
.
'Holdout'
— Fraction of data for holdout validationFraction of the data used for holdout validation, specified as the comma-separated pair
consisting of 'Holdout'
and a scalar value in the range (0,1). If you
specify 'Holdout',p
, then the software completes these steps:
Randomly select and reserve p*100
% of the data as
validation data, and train the model using the rest of the data.
Store the compact, trained model in the Trained
property of the cross-validated model.
To create a cross-validated model, you can use one of these
four name-value pair arguments only: CVPartition
, Holdout
, KFold
,
or Leaveout
.
Example: 'Holdout',0.1
Data Types: double
| single
'KFold'
— Number of folds10
(default) | positive integer value greater than 1Number of folds to use in a cross-validated model, specified as the comma-separated pair
consisting of 'KFold'
and a positive integer value greater than 1. If
you specify 'KFold',k
, then the software completes these steps:
Randomly partition the data into k
sets.
For each set, reserve the set as validation data, and train the model
using the other k
– 1 sets.
Store the k
compact, trained models in the cells of a
k
-by-1 cell vector in the Trained
property of the cross-validated model.
To create a cross-validated model, you can use one of these
four name-value pair arguments only: CVPartition
, Holdout
, KFold
,
or Leaveout
.
Example: 'KFold',5
Data Types: single
| double
'Leaveout'
— Leave-one-out cross-validation flag'off'
(default) | 'on'
Leave-one-out cross-validation flag, specified as the comma-separated pair consisting of
'Leaveout'
and 'on'
or
'off'
. If you specify 'Leaveout','on'
, then,
for each of the n observations (where n is the
number of observations excluding missing observations), the software completes these
steps:
Reserve the observation as validation data, and train the model using the other n – 1 observations.
Store the n compact, trained models in the cells of an
n-by-1 cell vector in the Trained
property of the cross-validated model.
To create a cross-validated model, you can use one of these
four name-value pair arguments only: CVPartition
, Holdout
, KFold
,
or Leaveout
.
Example: 'Leaveout','on'
'BetaTolerance'
— Relative tolerance on linear coefficients and bias term1e–5
(default) | nonnegative scalarRelative tolerance on the linear coefficients and the bias term (intercept), specified as the comma-separated pair consisting of 'BetaTolerance'
and a nonnegative scalar.
Let , that is, the vector of the coefficients and the bias term at optimization iteration t. If , then optimization terminates.
If you also specify GradientTolerance
, then optimization terminates when the software satisfies either stopping criterion.
Example: 'BetaTolerance',1e–6
Data Types: single
| double
'GradientTolerance'
— Absolute gradient tolerance1e–6
(default) | nonnegative scalarAbsolute gradient tolerance, specified as the comma-separated pair consisting of 'GradientTolerance'
and a nonnegative scalar.
Let be the gradient vector of the objective function with respect to the coefficients and bias term at optimization iteration t. If , then optimization terminates.
If you also specify BetaTolerance
, then optimization terminates when the
software satisfies either stopping criterion.
Example: 'GradientTolerance',1e–5
Data Types: single
| double
'IterationLimit'
— Maximum number of optimization iterationsMaximum number of optimization iterations, specified as the comma-separated pair consisting of 'IterationLimit'
and a positive integer.
The default value is 1000 if the transformed data fits in memory, as specified by the BlockSize
name-value pair argument. Otherwise, the default value is 100.
Example: 'IterationLimit',500
Data Types: single
| double
'BlockSize'
— Maximum amount of allocated memory4e^3
(4GB) (default) | positive scalarMaximum amount of allocated memory (in megabytes), specified as the comma-separated pair consisting of 'BlockSize'
and a positive scalar.
If fitckernel
requires more memory than the value of
'BlockSize'
to hold the transformed predictor data, then the
software uses a block-wise strategy. For details about the block-wise strategy, see
Algorithms.
Example: 'BlockSize',1e4
Data Types: single
| double
'RandomStream'
— Random number streamRandom number stream for reproducibility of data transformation, specified as the comma-separated pair consisting of 'RandomStream'
and a random stream object. For details, see Random Feature Expansion.
Use 'RandomStream'
to reproduce the random basis functions that
fitckernel
uses to transform the predictor data to a
high-dimensional space. For details, see Managing the Global Stream Using RandStream
and Creating and Controlling a Random Number Stream.
Example: 'RandomStream',RandStream('mlfg6331_64')
'HessianHistorySize'
— Size of history buffer for Hessian approximation15
(default) | positive integerSize of the history buffer for Hessian approximation, specified as the comma-separated pair
consisting of 'HessianHistorySize'
and a positive integer. At each
iteration, fitckernel
composes the Hessian approximation by using
statistics from the latest HessianHistorySize
iterations.
Example: 'HessianHistorySize',10
Data Types: single
| double
'Verbose'
— Verbosity level0
(default) | 1
Verbosity level, specified as the comma-separated pair consisting of
'Verbose'
and either 0
or
1
. Verbose
controls the
display of diagnostic information at the command line.
Value | Description |
---|---|
0 | fitckernel does not display
diagnostic information. |
1 | fitckernel displays and stores
the value of the objective function, gradient magnitude,
and other diagnostic information.
FitInfo.History contains the
diagnostic information. |
Example: 'Verbose',1
Data Types: single
| double
'CategoricalPredictors'
— Categorical predictors list'all'
Categorical predictors
list, specified as the comma-separated pair consisting of
'CategoricalPredictors'
and one of the values in this table.
Value | Description |
---|---|
Vector of positive integers | Each entry in the vector is an index value corresponding to the column of the
predictor data (X or Tbl ) that contains a
categorical variable. |
Logical vector | A true entry means that the corresponding column of predictor
data (X or Tbl ) is a categorical
variable. |
Character matrix | Each row of the matrix is the name of a predictor variable. The names must match
the entries in PredictorNames . Pad the names with extra blanks so
each row of the character matrix has the same length. |
String array or cell array of character vectors | Each element in the array is the name of a predictor variable. The names must match
the entries in PredictorNames . |
'all' | All predictors are categorical. |
By default, if the
predictor data is in a table (Tbl
), fitckernel
assumes that a variable is categorical if it is a logical vector, categorical vector, character
array, string array, or cell array of character vectors. If the predictor data is a matrix
(X
), fitckernel
assumes that all predictors are
continuous. To identify any other predictors as categorical predictors, specify them by using
the 'CategoricalPredictors'
name-value pair argument.
For the identified categorical predictors, fitckernel
creates dummy variables using two different schemes, depending on whether a
categorical variable is unordered or ordered. For an unordered categorical
variable, fitckernel
creates one dummy variable for
each level of the categorical variable. For an ordered categorical variable,
fitckernel
creates one less dummy variable
than the number of categories. For details, see Automatic Creation of Dummy Variables.
Example: 'CategoricalPredictors','all'
Data Types: single
| double
| logical
| char
| string
| cell
'ClassNames'
— Names of classes to use for trainingNames of classes to use for training, specified as the comma-separated pair consisting of
'ClassNames'
and a categorical, character, or string array, a
logical or numeric vector, or a cell array of character vectors.
ClassNames
must have the same data type as
Y
.
If ClassNames
is a character array, then each element must correspond to
one row of the array.
Use 'ClassNames'
to:
Order the classes during training.
Specify the order of any input or output argument dimension that
corresponds to the class order. For example, use
'ClassNames'
to specify the order of the dimensions
of Cost
or the column order of classification scores
returned by predict
.
Select a subset of classes for training. For example, suppose that the set
of all distinct class names in Y
is
{'a','b','c'}
. To train the model using observations
from classes 'a'
and 'c'
only, specify
'ClassNames',{'a','c'}
.
The default value for ClassNames
is the set of all distinct class names in
Y
.
Example: 'ClassNames',{'b','g'}
Data Types: categorical
| char
| string
| logical
| single
| double
| cell
'Cost'
— Misclassification costMisclassification cost, specified as the comma-separated pair consisting of
'Cost'
and a square matrix or structure.
If you specify the square matrix cost
('Cost',cost
), then cost(i,j)
is the
cost of classifying a point into class j
if its true class is
i
. That is, the rows correspond to the true class, and
the columns correspond to the predicted class. To specify the class order for
the corresponding rows and columns of cost
, use the
ClassNames
name-value pair argument.
If you specify the structure S
('Cost',S
), then it must have two fields:
S.ClassNames
, which contains the class names as
a variable of the same data type as Y
S.ClassificationCosts
, which contains the cost
matrix with rows and columns ordered as in
S.ClassNames
The default value for Cost
is
ones(
, where K
) –
eye(K
)K
is
the number of distinct classes.
fitckernel
uses Cost
to adjust the prior
class probabilities specified in Prior
. Then,
fitckernel
uses the adjusted prior probabilities for training
and resets the cost matrix to its default.
Example: 'Cost',[0 2; 1 0]
Data Types: single
| double
| struct
'PredictorNames'
— Predictor variable namesPredictor variable names, specified as the comma-separated pair consisting of
'PredictorNames'
and a string array of unique names or cell array
of unique character vectors. The functionality of 'PredictorNames'
depends on the way you supply the training data.
If you supply X
and Y
, then you
can use 'PredictorNames'
to assign names to the predictor
variables in X
.
The order of the names in PredictorNames
must correspond to the column order of X
.
That is, PredictorNames{1}
is the name of
X(:,1)
,
PredictorNames{2}
is the name of
X(:,2)
, and so on. Also,
size(X,2)
and
numel(PredictorNames)
must be
equal.
By default, PredictorNames
is
{'x1','x2',...}
.
If you supply Tbl
, then you can use
'PredictorNames'
to choose which predictor variables
to use in training. That is, fitckernel
uses only the
predictor variables in PredictorNames
and the response
variable during training.
PredictorNames
must be a subset of
Tbl.Properties.VariableNames
and cannot
include the name of the response variable.
By default, PredictorNames
contains the
names of all predictor variables.
A good practice is to specify the predictors for training
using either 'PredictorNames'
or
formula
, but not both.
Example: 'PredictorNames',{'SepalLength','SepalWidth','PetalLength','PetalWidth'}
Data Types: string
| cell
'Prior'
— Prior probabilities'empirical'
(default) | 'uniform'
| numeric vector | structure arrayPrior probabilities for each class, specified as the comma-separated pair consisting
of 'Prior'
and 'empirical'
,
'uniform'
, a numeric vector, or a structure array.
This table summarizes the available options for setting prior probabilities.
Value | Description |
---|---|
'empirical' | The class prior probabilities are the class relative frequencies
in Y . |
'uniform' | All class prior probabilities are equal to
1/K , where
K is the number of classes. |
numeric vector | Each element is a class prior probability. Order the elements
according to their order in Y . If you specify
the order using the 'ClassNames' name-value
pair argument, then order the elements accordingly. |
structure array |
A structure
|
fitckernel
normalizes the prior probabilities in
Prior
to sum to 1.
Example: 'Prior',struct('ClassNames',{{'setosa','versicolor'}},'ClassProbs',1:2)
Data Types: char
| string
| double
| single
| struct
'ResponseName'
— Response variable name'Y'
(default) | character vector | string scalarResponse variable name, specified as the comma-separated pair consisting of
'ResponseName'
and a character vector or string scalar.
If you supply Y
, then you can
use 'ResponseName'
to specify a name for the response
variable.
If you supply ResponseVarName
or formula
,
then you cannot use 'ResponseName'
.
Example: 'ResponseName','response'
Data Types: char
| string
'ScoreTransform'
— Score transformation'none'
(default) | 'doublelogit'
| 'invlogit'
| 'ismax'
| 'logit'
| function handle | ...Score transformation, specified as the comma-separated pair consisting of
'ScoreTransform'
and a character vector, string scalar, or
function handle.
This table summarizes the available character vectors and string scalars.
Value | Description |
---|---|
'doublelogit' | 1/(1 + e–2x) |
'invlogit' | log(x / (1 – x)) |
'ismax' | Sets the score for the class with the largest score to 1, and sets the scores for all other classes to 0 |
'logit' | 1/(1 + e–x) |
'none' or 'identity' | x (no transformation) |
'sign' | –1 for x < 0 0 for x = 0 1 for x > 0 |
'symmetric' | 2x – 1 |
'symmetricismax' | Sets the score for the class with the largest score to 1, and sets the scores for all other classes to –1 |
'symmetriclogit' | 2/(1 + e–x) – 1 |
For a MATLAB function or a function you define, use its function handle for the score transform. The function handle must accept a matrix (the original scores) and return a matrix of the same size (the transformed scores).
Example: 'ScoreTransform','logit'
Data Types: char
| string
| function_handle
'Weights'
— Observation weightsTbl
Observation weights, specified as the comma-separated pair consisting of
'Weights'
and a positive numeric vector or the name of a variable
in Tbl
. The software weights each observation in
X
or Tbl
with the corresponding value in
Weights
. The length of Weights
must equal
the number of observations in X
or Tbl
.
If you specify the input data as a table Tbl
, then
Weights
can be the name of a variable in
Tbl
that contains a numeric vector. In this case, you must
specify Weights
as a character vector or string scalar. For
example, if the weights vector W
is stored as
Tbl.W
, then specify it as 'W'
. Otherwise, the
software treats all columns of Tbl
, including W
,
as predictors or the response variable when training the model.
By default, Weights
is ones(n,1)
, where
n
is the number of observations in X
or
Tbl
.
The software normalizes Weights
to sum to the value of the prior
probability in the respective class.
Data Types: single
| double
| char
| string
'OptimizeHyperparameters'
— Parameters to optimize'none'
(default) | 'auto'
| 'all'
| string array or cell array of eligible parameter names | vector of optimizableVariable
objectsParameters to optimize, specified as the comma-separated pair
consisting of 'OptimizeHyperparameters'
and one of
these values:
'none'
— Do not optimize.
'auto'
— Use
{'KernelScale','Lambda'}
.
'all'
— Optimize all eligible
parameters.
Cell array of eligible parameter names.
Vector of optimizableVariable
objects,
typically the output of hyperparameters
.
The optimization attempts to minimize the cross-validation loss
(error) for fitckernel
by varying the parameters.
To control the cross-validation type and other aspects of the
optimization, use the
HyperparameterOptimizationOptions
name-value
pair argument.
Note
'OptimizeHyperparameters'
values override any values you set using
other name-value pair arguments. For example, setting
'OptimizeHyperparameters'
to 'auto'
causes the
'auto'
values to apply.
The eligible parameters for fitckernel
are:
KernelScale
—
fitckernel
searches among positive
values, by default log-scaled in the range
[1e-3,1e3]
.
Lambda
—
fitckernel
searches among positive
values, by default log-scaled in the range
[1e-3,1e3]/n
, where n
is the number of observations.
Learner
—
fitckernel
searches among
'svm'
and
'logistic'
.
NumExpansionDimensions
—
fitckernel
searches among positive
integers, by default log-scaled in the range
[100,10000]
.
Set nondefault parameters by passing a vector of
optimizableVariable
objects that have nondefault
values. For example:
load fisheriris params = hyperparameters('fitckernel',meas,species); params(2).Range = [1e-4,1e6];
Pass params
as the value of
'OptimizeHyperparameters'
.
By default, iterative display appears at the command line, and
plots appear according to the number of hyperparameters in the optimization. For the
optimization and plots, the objective function is log(1 + cross-validation loss) for regression and the misclassification rate for classification. To control
the iterative display, set the Verbose
field of the
'HyperparameterOptimizationOptions'
name-value pair argument. To
control the plots, set the ShowPlots
field of the
'HyperparameterOptimizationOptions'
name-value pair argument.
For an example, see Optimize Kernel Classifier.
Example: 'OptimizeHyperparameters','auto'
'HyperparameterOptimizationOptions'
— Options for optimizationOptions for optimization, specified as the comma-separated pair consisting of
'HyperparameterOptimizationOptions'
and a structure. This
argument modifies the effect of the OptimizeHyperparameters
name-value pair argument. All fields in the structure are optional.
Field Name | Values | Default |
---|---|---|
Optimizer |
| 'bayesopt' |
AcquisitionFunctionName |
Acquisition functions whose names include
| 'expected-improvement-per-second-plus' |
MaxObjectiveEvaluations | Maximum number of objective function evaluations. | 30 for 'bayesopt' or 'randomsearch' , and the entire grid for 'gridsearch' |
MaxTime | Time limit, specified as a positive real. The time limit is in seconds, as measured by | Inf |
NumGridDivisions | For 'gridsearch' , the number of values in each dimension. The value can be
a vector of positive integers giving the number of
values for each dimension, or a scalar that
applies to all dimensions. This field is ignored
for categorical variables. | 10 |
ShowPlots | Logical value indicating whether to show plots. If true , this field plots
the best objective function value against the
iteration number. If there are one or two
optimization parameters, and if
Optimizer is
'bayesopt' , then
ShowPlots also plots a model of
the objective function against the
parameters. | true |
SaveIntermediateResults | Logical value indicating whether to save results when Optimizer is
'bayesopt' . If
true , this field overwrites a
workspace variable named
'BayesoptResults' at each
iteration. The variable is a BayesianOptimization object. | false |
Verbose | Display to the command line.
For details, see the
| 1 |
UseParallel | Logical value indicating whether to run Bayesian optimization in parallel, which requires Parallel Computing Toolbox™. Due to the nonreproducibility of parallel timing, parallel Bayesian optimization does not necessarily yield reproducible results. For details, see Parallel Bayesian Optimization. | false |
Repartition | Logical value indicating whether to repartition the cross-validation at every iteration. If
| false |
Use no more than one of the following three field names. | ||
CVPartition | A cvpartition object, as created by cvpartition . | 'Kfold',5 if you do not specify any cross-validation
field |
Holdout | A scalar in the range (0,1) representing the holdout fraction. | |
Kfold | An integer greater than 1. |
Example: 'HyperparameterOptimizationOptions',struct('MaxObjectiveEvaluations',60)
Data Types: struct
Mdl
— Trained kernel classification modelClassificationKernel
model object | ClassificationPartitionedKernel
cross-validated model
objectTrained kernel classification model, returned as a ClassificationKernel
model object or ClassificationPartitionedKernel
cross-validated model
object.
If you set any of the name-value pair arguments
CrossVal
, CVPartition
,
Holdout
, KFold
, or
Leaveout
, then Mdl
is a
ClassificationPartitionedKernel
cross-validated
classifier. Otherwise, Mdl
is a
ClassificationKernel
classifier.
To reference properties of Mdl
, use dot notation. For
example, enter Mdl.NumExpansionDimensions
in the Command
Window to display the number of dimensions of the expanded space.
Note
Unlike other classification models, and for economical memory usage, a
ClassificationKernel
model object does not store
the training data or training process details (for example, convergence
history).
FitInfo
— Optimization detailsOptimization details, returned as a structure array including fields described in this table. The fields contain final values or name-value pair argument specifications.
Field | Description |
---|---|
Solver | Objective function minimization technique: |
LossFunction | Loss function. Either 'hinge' or 'logit' depending on
the type of linear classification model. See Learner . |
Lambda | Regularization term strength. See Lambda . |
BetaTolerance | Relative tolerance on the linear coefficients and the bias term. See
BetaTolerance . |
GradientTolerance | Absolute gradient tolerance. See GradientTolerance . |
ObjectiveValue | Value of the objective function when optimization terminates. The classification loss plus the regularization term compose the objective function. |
GradientMagnitude | Infinite norm of the gradient vector of the objective function when optimization terminates.
See
GradientTolerance . |
RelativeChangeInBeta | Relative changes in the linear coefficients and the bias term when optimization terminates.
See BetaTolerance . |
FitTime | Elapsed, wall-clock time (in seconds) required to fit the model to the data. |
History | History of optimization information. This
field is empty ([] ) if you
specify 'Verbose',0 . For
details, see Verbose and Algorithms. |
To access fields, use dot notation. For example, to access the vector of objective function
values for each iteration, enter FitInfo.ObjectiveValue
in the
Command Window.
A good practice is to examine FitInfo
to assess whether convergence is
satisfactory.
HyperparameterOptimizationResults
— Cross-validation optimization of hyperparametersBayesianOptimization
object | table of hyperparameters and associated valuesCross-validation optimization of hyperparameters, returned as a BayesianOptimization
object or a table of hyperparameters and associated
values. The output is nonempty when the value of
'OptimizeHyperparameters'
is not 'none'
. The
output value depends on the Optimizer
field value of the
'HyperparameterOptimizationOptions'
name-value pair
argument:
Value of Optimizer Field | Value of HyperparameterOptimizationResults |
---|---|
'bayesopt' (default) | Object of class BayesianOptimization |
'gridsearch' or 'randomsearch' | Table of hyperparameters used, observed objective function values (cross-validation loss), and rank of observations from lowest (best) to highest (worst) |
fitckernel
does not accept initial conditions for the
vector of coefficients beta (β) and bias term
(b) used to determine the decision function,
fitckernel
does not support standardization.
Random feature expansion, such as Random Kitchen Sinks[1] and Fastfood[2], is a scheme to approximate Gaussian kernels of the kernel classification algorithm to use for big data in a computationally efficient way. Random feature expansion is more practical for big data applications that have large training sets, but can also be applied to smaller data sets that fit in memory.
The kernel classification algorithm searches for an optimal hyperplane that separates the data into two classes after mapping features into a high-dimensional space. Nonlinear features that are not linearly separable in a low-dimensional space can be separable in the expanded high-dimensional space. All the calculations for hyperplane classification use only dot products. You can obtain a nonlinear classification model by replacing the dot product x1x2' with the nonlinear kernel function , where xi is the ith observation (row vector) and φ(xi) is a transformation that maps xi to a high-dimensional space (called the “kernel trick”). However, evaluating G(x1,x2) (Gram matrix) for each pair of observations is computationally expensive for a large data set (large n).
The random feature expansion scheme finds a random transformation so that its dot product approximates the Gaussian kernel. That is,
where T(x) maps x in to a high-dimensional space (). The Random Kitchen Sink scheme uses the random transformation
where is a sample drawn from and σ2 is a kernel scale. This scheme requires O(mp) computation and storage. The Fastfood scheme introduces another random
basis V instead of Z using Hadamard matrices combined
with Gaussian scaling matrices. This random basis reduces the computation cost to O(mlog
p) and reduces storage to O(m).
The fitckernel
function uses the Fastfood scheme for random feature expansion and uses linear classification to train a Gaussian kernel classification model. Unlike solvers in the fitcsvm
function, which require computation of the n-by-n Gram matrix, the solver in fitckernel
only needs to form a matrix of size n-by-m, with m typically much less than n for big data.
A box constraint is a parameter that controls the maximum penalty imposed on margin-violating observations, and aids in preventing overfitting (regularization). Increasing the box constraint can lead to longer training times.
The box constraint (C) and the regularization term strength (λ) are related by C = 1/(λn), where n is the number of observations.
fitckernel
minimizes the regularized objective function using a Limited-memory Broyden-Fletcher-Goldfarb-Shanno (LBFGS) solver with ridge (L2) regularization. To find the type of LBFGS solver used for training, type FitInfo.Solver
in the Command Window.
'LBFGS-fast'
— LBFGS solver.
'LBFGS-blockwise'
— LBFGS solver with a block-wise strategy. If fitckernel
requires more memory than the value of BlockSize
to hold the transformed predictor data, then it uses a block-wise strategy.
'LBFGS-tall'
— LBFGS solver with a block-wise strategy for tall arrays.
When fitckernel
uses a block-wise strategy, fitckernel
implements LBFGS by distributing the calculation of the loss and gradient among different parts of the data at each iteration. Also, fitckernel
refines the initial estimates of the linear coefficients and the bias term by fitting the model locally to parts of the data and combining the coefficients by averaging. If you specify 'Verbose',1
, then fitckernel
displays diagnostic information for each data pass and stores the information in the History
field of FitInfo
.
When fitckernel
does not use a block-wise strategy, the initial estimates are zeros. If you specify 'Verbose',1
, then fitckernel
displays diagnostic information for each iteration and stores the information in the History
field of FitInfo
.
[1] Rahimi, A., and B. Recht. “Random Features for Large-Scale Kernel Machines.” Advances in Neural Information Processing Systems. Vol. 20, 2008, pp. 1177–1184.
[2] Le, Q., T. Sarlós, and A. Smola. “Fastfood — Approximating Kernel Expansions in Loglinear Time.” Proceedings of the 30th International Conference on Machine Learning. Vol. 28, No. 3, 2013, pp. 244–252.
[3] Huang, P. S., H. Avron, T. N. Sainath, V. Sindhwani, and B. Ramabhadran. “Kernel methods match Deep Neural Networks on TIMIT.” 2014 IEEE International Conference on Acoustics, Speech and Signal Processing. 2014, pp. 205–209.
Usage notes and limitations:
fitckernel
does not support tall table
data.
Some name-value pair arguments have different defaults compared to the default values
for the in-memory fitckernel
function. Supported name-value pair
arguments, and any differences, are:
'Learner'
'NumExpansionDimensions'
'KernelScale'
'BoxConstraint'
'Lambda'
'BetaTolerance'
— Default value is relaxed to
1e–3
.
'GradientTolerance'
— Default value is relaxed to
1e–5
.
'IterationLimit'
— Default value is relaxed to
20
.
'BlockSize'
'RandomStream'
'HessianHistorySize'
'Verbose'
— Default value is
1
.
'ClassNames'
'Cost'
'Prior'
'ScoreTransform'
'Weights'
— Value must be a tall array.
'OptimizeHyperparameters'
'HyperparameterOptimizationOptions'
— For
cross-validation, tall optimization supports only 'Holdout'
validation. For example, you can specify
fitckernel(X,Y,'OptimizeHyperparameters','auto','HyperparameterOptimizationOptions',struct('Holdout',0.2))
.
If 'KernelScale'
is 'auto'
, then
fitckernel
uses the random stream controlled by tallrng
for subsampling. For reproducibility, you must set a random number seed for both the
global stream and the random stream controlled by tallrng
.
If 'Lambda'
is 'auto'
, then
fitckernel
might take an extra pass through the data to
calculate the number of observations in X
.
fitckernel
uses a block-wise strategy. For details, see Algorithms.
For more information, see Tall Arrays.
To perform parallel hyperparameter optimization, use the
'HyperparameterOptimizationOptions', struct('UseParallel',true)
name-value pair argument in the call to this function.
For more information on parallel hyperparameter optimization, see Parallel Bayesian Optimization.
For more general information about parallel computing, see Run MATLAB Functions with Automatic Parallel Support (Parallel Computing Toolbox).
bayesopt
| bestPoint
| ClassificationKernel
| ClassificationPartitionedKernel
| fitclinear
| fitcsvm
| predict
| resume
| templateKernel
You have a modified version of this example. Do you want to open this example with your edits?