Gaussian kernel classification model using random feature expansion
ClassificationKernel
is a trained model object for a binary
Gaussian kernel classification model using random feature expansion.
ClassificationKernel
is more practical for big data applications
that have large training sets but can also be applied to smaller data sets that fit in
memory.
Unlike other classification models, and for economical memory usage,
ClassificationKernel
model objects do not store the training
data. However, they do store information such as the number of dimensions of the
expanded space, the kernel scale parameter, prior-class probabilities, and the
regularization strength.
You can use trained ClassificationKernel
models to continue
training using the training data and to predict labels or classification scores for new
data. For details, see resume
and
predict
.
Create a ClassificationKernel
object using the fitckernel
function. This function maps data in a low-dimensional space into a high-dimensional
space, then fits a linear model in the high-dimensional space by minimizing the
regularized objective function. The linear model in the high-dimensional space is
equivalent to the model with a Gaussian kernel in the low-dimensional space. Available
linear classification models include regularized support vector machine (SVM) and
logistic regression models.
Learner
— Linear classification model type'logistic'
| 'svm'
Linear classification model type, specified as
'logistic'
or 'svm'
.
In the following table,
x is an observation (row vector) from p predictor variables.
is a transformation of an observation (row vector) for feature expansion. T(x) maps x in to a high-dimensional space ().
β is a vector of m coefficients.
b is the scalar bias.
Value | Algorithm | Loss Function | FittedLoss Value |
---|---|---|---|
'logistic' | Logistic regression | Deviance (logistic): | 'logit' |
'svm' | Support vector machine | Hinge: | 'hinge' |
NumExpansionDimensions
— Number of dimensions of expanded spaceNumber of dimensions of the expanded space, specified as a positive integer.
Data Types: single
| double
KernelScale
— Kernel scale parameterKernel scale parameter, specified as a positive scalar.
Data Types: char
| single
| double
BoxConstraint
— Box constraintBox constraint, specified as a positive scalar.
Data Types: double
| single
Lambda
— Regularization term strengthRegularization term strength, specified as a nonnegative scalar.
Data Types: single
| double
FittedLoss
— Loss function used to fit linear model'hinge'
| 'logit'
This property is read-only.
Loss function used to fit the linear model, specified as 'hinge'
or 'logit'
.
Value | Algorithm | Loss Function | Learner Value |
---|---|---|---|
'hinge' | Support vector machine | Hinge: | 'svm' |
'logit' | Logistic regression | Deviance (logistic): | 'logistic' |
Regularization
— Complexity penalty type'ridge (L2)'
Complexity penalty type, which is always 'ridge
(L2)'
.
The software composes the objective function for minimization from the
sum of the average loss function (see FittedLoss
) and the regularization term, ridge (L2) penalty.
The ridge (L2) penalty is
where λ specifies the
regularization term strength (see Lambda
). The software excludes the bias term
(β0) from the
regularization penalty.
CategoricalPredictors
— Indices of categorical predictorsCategorical predictor
indices, specified as a vector of positive integers. CategoricalPredictors
contains index values corresponding to the columns of the predictor data that contain
categorical predictors. If none of the predictors are categorical, then this property is empty
([]
).
Data Types: single
| double
ClassNames
— Unique class labelsUnique class labels used in training, specified as a categorical or
character array, logical or numeric vector, or cell array of
character vectors. ClassNames
has the same
data type as the class labels Y
.
(The software treats string arrays as cell arrays of character
vectors.)
ClassNames
also determines the class
order.
Data Types: categorical
| char
| logical
| single
| double
| cell
Cost
— Misclassification costsThis property is read-only.
Misclassification costs, specified as a square numeric matrix. Cost
has K rows
and columns, where K is the number of classes.
Cost(
is
the cost of classifying a point into class i
,j
)j
if
its true class is i
. The order of the rows
and columns of Cost
corresponds to the order of
the classes in ClassNames
.
Data Types: double
ModelParameters
— Parameters used for training modelParameters used for training the ClassificationKernel
model, specified as a structure.
Access fields of ModelParameters
using dot notation. For example, access
the relative tolerance on the linear coefficients and the bias term by using
Mdl.ModelParameters.BetaTolerance
.
Data Types: struct
PredictorNames
— Predictor namesPredictor names in order of their appearance in the predictor data,
specified as a cell array of character vectors. The length of
PredictorNames
is equal to the number of
columns used as predictor variables in the training data
X
or Tbl
.
Data Types: cell
ExpandedPredictorNames
— Expanded predictor namesExpanded predictor names, specified as a cell array of character vectors.
If the model uses encoding for categorical variables, then
ExpandedPredictorNames
includes the names that describe the
expanded variables. Otherwise, ExpandedPredictorNames
is the same as
PredictorNames
.
Data Types: cell
Prior
— Prior class probabilitiesThis property is read-only.
Prior class probabilities, specified as a numeric vector.
Prior
has as many elements as
classes in ClassNames
, and the order of the
elements corresponds to the elements of
ClassNames
.
Data Types: double
ResponseName
— Response variable nameResponse variable name, specified as a character vector.
Data Types: char
ScoreTransform
— Score transformation function to apply to predicted scores'doublelogit'
| 'invlogit'
| 'ismax'
| 'logit'
| 'none'
| function handle | ...Score transformation function to apply to predicted scores, specified as a function name or function handle.
For kernel classification models and before the score transformation, the predicted classification score for the observation x (row vector) is
is a transformation of an observation for feature expansion.
β is the estimated column vector of coefficients.
b is the estimated scalar bias.
To change the score transformation function to
function
, for example, use dot notation.
For a built-in function, enter this code and replace
function
with a value from
the table.
Mdl.ScoreTransform = 'function';
Value | Description |
---|---|
'doublelogit' | 1/(1 + e–2x) |
'invlogit' | log(x / (1 – x)) |
'ismax' | Sets the score for the class with the largest score to 1, and sets the scores for all other classes to 0 |
'logit' | 1/(1 + e–x) |
'none' or 'identity' | x (no transformation) |
'sign' | –1 for x < 0 0 for x = 0 1 for x > 0 |
'symmetric' | 2x – 1 |
'symmetricismax' | Sets the score for the class with the largest score to 1, and sets the scores for all other classes to –1 |
'symmetriclogit' | 2/(1 + e–x) – 1 |
For a MATLAB® function, or a function that you define, enter its function handle.
Mdl.ScoreTransform = @function;
function
must accept a matrix
of the original scores for each class, and then return a
matrix of the same size representing the transformed scores
for each class.
Data Types: char
| function_handle
edge | Classification edge for Gaussian kernel classification model |
loss | Classification loss for Gaussian kernel classification model |
margin | Classification margins for Gaussian kernel classification model |
partialDependence | Compute partial dependence |
plotPartialDependence | Create partial dependence plot (PDP) and individual conditional expectation (ICE) plots |
predict | Predict labels for Gaussian kernel classification model |
resume | Resume training of Gaussian kernel classification model |
Train a binary kernel classification model using SVM.
Load the ionosphere
data set. This data set has 34 predictors and 351 binary responses for radar returns, either bad ('b'
) or good ('g'
).
load ionosphere
[n,p] = size(X)
n = 351
p = 34
resp = unique(Y)
resp = 2x1 cell
{'b'}
{'g'}
Train a binary kernel classification model that identifies whether the radar return is bad ('b'
) or good ('g'
). Extract a fit summary to determine how well the optimization algorithm fits the model to the data.
rng('default') % For reproducibility [Mdl,FitInfo] = fitckernel(X,Y)
Mdl = ClassificationKernel ResponseName: 'Y' ClassNames: {'b' 'g'} Learner: 'svm' NumExpansionDimensions: 2048 KernelScale: 1 Lambda: 0.0028 BoxConstraint: 1 Properties, Methods
FitInfo = struct with fields:
Solver: 'LBFGS-fast'
LossFunction: 'hinge'
Lambda: 0.0028
BetaTolerance: 1.0000e-04
GradientTolerance: 1.0000e-06
ObjectiveValue: 0.2604
GradientMagnitude: 0.0028
RelativeChangeInBeta: 8.2512e-05
FitTime: 0.1504
History: []
Mdl
is a ClassificationKernel
model. To inspect the in-sample classification error, you can pass Mdl
and the training data or new data to the loss
function. Or, you can pass Mdl
and new predictor data to the predict
function to predict class labels for new observations. You can also pass Mdl
and the training data to the resume
function to continue training.
FitInfo
is a structure array containing optimization information. Use FitInfo
to determine whether optimization termination measurements are satisfactory.
For better accuracy, you can increase the maximum number of optimization iterations ('IterationLimit'
) and decrease the tolerance values ('BetaTolerance'
and 'GradientTolerance'
) by using the name-value pair arguments. Doing so can improve measures like ObjectiveValue
and RelativeChangeInBeta
in FitInfo
. You can also optimize model parameters by using the 'OptimizeHyperparameters'
name-value pair argument.
Load the ionosphere
data set. This data set has 34 predictors and 351 binary responses for radar returns, either bad ('b'
) or good ('g'
).
load ionosphere
Partition the data set into training and test sets. Specify a 20% holdout sample for the test set.
rng('default') % For reproducibility Partition = cvpartition(Y,'Holdout',0.20); trainingInds = training(Partition); % Indices for the training set XTrain = X(trainingInds,:); YTrain = Y(trainingInds); testInds = test(Partition); % Indices for the test set XTest = X(testInds,:); YTest = Y(testInds);
Train a binary kernel classification model that identifies whether the radar return is bad ('b'
) or good ('g'
).
Mdl = fitckernel(XTrain,YTrain,'IterationLimit',5,'Verbose',1);
|=================================================================================================================| | Solver | Pass | Iteration | Objective | Step | Gradient | Relative | sum(beta~=0) | | | | | | | magnitude | change in Beta | | |=================================================================================================================| | LBFGS | 1 | 0 | 1.000000e+00 | 0.000000e+00 | 2.811388e-01 | | 0 | | LBFGS | 1 | 1 | 7.585395e-01 | 4.000000e+00 | 3.594306e-01 | 1.000000e+00 | 2048 | | LBFGS | 1 | 2 | 7.160994e-01 | 1.000000e+00 | 2.028470e-01 | 6.923988e-01 | 2048 | | LBFGS | 1 | 3 | 6.825272e-01 | 1.000000e+00 | 2.846975e-02 | 2.388909e-01 | 2048 | | LBFGS | 1 | 4 | 6.699435e-01 | 1.000000e+00 | 1.779359e-02 | 1.325304e-01 | 2048 | | LBFGS | 1 | 5 | 6.535619e-01 | 1.000000e+00 | 2.669039e-01 | 4.112952e-01 | 2048 | |=================================================================================================================|
Mdl
is a ClassificationKernel
model.
Predict the test-set labels, construct a confusion matrix for the test set, and estimate the classification error for the test set.
label = predict(Mdl,XTest); ConfusionTest = confusionchart(YTest,label);
L = loss(Mdl,XTest,YTest)
L = 0.3594
Mdl
misclassifies all bad radar returns as good returns.
Continue training by using resume
. This function continues training with the same options used for training Mdl
.
UpdatedMdl = resume(Mdl,XTrain,YTrain);
|=================================================================================================================| | Solver | Pass | Iteration | Objective | Step | Gradient | Relative | sum(beta~=0) | | | | | | | magnitude | change in Beta | | |=================================================================================================================| | LBFGS | 1 | 0 | 6.535619e-01 | 0.000000e+00 | 2.669039e-01 | | 2048 | | LBFGS | 1 | 1 | 6.132547e-01 | 1.000000e+00 | 6.355537e-03 | 1.522092e-01 | 2048 | | LBFGS | 1 | 2 | 5.938316e-01 | 4.000000e+00 | 3.202847e-02 | 1.498036e-01 | 2048 | | LBFGS | 1 | 3 | 4.169274e-01 | 1.000000e+00 | 1.530249e-01 | 7.234253e-01 | 2048 | | LBFGS | 1 | 4 | 3.679212e-01 | 5.000000e-01 | 2.740214e-01 | 2.495886e-01 | 2048 | | LBFGS | 1 | 5 | 3.332261e-01 | 1.000000e+00 | 1.423488e-02 | 9.558680e-02 | 2048 | | LBFGS | 1 | 6 | 3.235335e-01 | 1.000000e+00 | 7.117438e-03 | 7.137260e-02 | 2048 | | LBFGS | 1 | 7 | 3.112331e-01 | 1.000000e+00 | 6.049822e-02 | 1.252157e-01 | 2048 | | LBFGS | 1 | 8 | 2.972144e-01 | 1.000000e+00 | 7.117438e-03 | 5.796240e-02 | 2048 | | LBFGS | 1 | 9 | 2.837450e-01 | 1.000000e+00 | 8.185053e-02 | 1.484733e-01 | 2048 | | LBFGS | 1 | 10 | 2.797642e-01 | 1.000000e+00 | 3.558719e-02 | 5.856842e-02 | 2048 | | LBFGS | 1 | 11 | 2.771280e-01 | 1.000000e+00 | 2.846975e-02 | 2.349433e-02 | 2048 | | LBFGS | 1 | 12 | 2.741570e-01 | 1.000000e+00 | 3.914591e-02 | 3.113194e-02 | 2048 | | LBFGS | 1 | 13 | 2.725701e-01 | 5.000000e-01 | 1.067616e-01 | 8.729821e-02 | 2048 | | LBFGS | 1 | 14 | 2.667147e-01 | 1.000000e+00 | 3.914591e-02 | 3.491723e-02 | 2048 | | LBFGS | 1 | 15 | 2.621152e-01 | 1.000000e+00 | 7.117438e-03 | 5.104726e-02 | 2048 | | LBFGS | 1 | 16 | 2.601652e-01 | 1.000000e+00 | 3.558719e-02 | 3.764904e-02 | 2048 | | LBFGS | 1 | 17 | 2.589052e-01 | 1.000000e+00 | 3.202847e-02 | 3.655744e-02 | 2048 | | LBFGS | 1 | 18 | 2.583185e-01 | 1.000000e+00 | 7.117438e-03 | 6.490571e-02 | 2048 | | LBFGS | 1 | 19 | 2.556482e-01 | 1.000000e+00 | 9.252669e-02 | 4.601390e-02 | 2048 | | LBFGS | 1 | 20 | 2.542643e-01 | 1.000000e+00 | 7.117438e-02 | 4.141838e-02 | 2048 | |=================================================================================================================| | Solver | Pass | Iteration | Objective | Step | Gradient | Relative | sum(beta~=0) | | | | | | | magnitude | change in Beta | | |=================================================================================================================| | LBFGS | 1 | 21 | 2.532117e-01 | 1.000000e+00 | 1.067616e-02 | 1.661720e-02 | 2048 | | LBFGS | 1 | 22 | 2.529890e-01 | 1.000000e+00 | 2.135231e-02 | 1.231678e-02 | 2048 | | LBFGS | 1 | 23 | 2.523232e-01 | 1.000000e+00 | 3.202847e-02 | 1.958586e-02 | 2048 | | LBFGS | 1 | 24 | 2.506736e-01 | 1.000000e+00 | 1.779359e-02 | 2.474613e-02 | 2048 | | LBFGS | 1 | 25 | 2.501995e-01 | 1.000000e+00 | 1.779359e-02 | 2.514352e-02 | 2048 | | LBFGS | 1 | 26 | 2.488242e-01 | 1.000000e+00 | 3.558719e-03 | 1.531810e-02 | 2048 | | LBFGS | 1 | 27 | 2.485295e-01 | 5.000000e-01 | 3.202847e-02 | 1.229760e-02 | 2048 | | LBFGS | 1 | 28 | 2.482244e-01 | 1.000000e+00 | 4.270463e-02 | 8.970983e-03 | 2048 | | LBFGS | 1 | 29 | 2.479714e-01 | 1.000000e+00 | 3.558719e-03 | 7.393900e-03 | 2048 | | LBFGS | 1 | 30 | 2.477316e-01 | 1.000000e+00 | 3.202847e-02 | 3.268087e-03 | 2048 | | LBFGS | 1 | 31 | 2.476178e-01 | 2.500000e-01 | 3.202847e-02 | 5.445890e-03 | 2048 | | LBFGS | 1 | 32 | 2.474874e-01 | 1.000000e+00 | 1.779359e-02 | 3.535903e-03 | 2048 | | LBFGS | 1 | 33 | 2.473980e-01 | 1.000000e+00 | 7.117438e-03 | 2.821725e-03 | 2048 | | LBFGS | 1 | 34 | 2.472935e-01 | 1.000000e+00 | 3.558719e-03 | 2.699880e-03 | 2048 | | LBFGS | 1 | 35 | 2.471418e-01 | 1.000000e+00 | 3.558719e-03 | 1.242523e-02 | 2048 | | LBFGS | 1 | 36 | 2.469862e-01 | 1.000000e+00 | 2.846975e-02 | 7.895605e-03 | 2048 | | LBFGS | 1 | 37 | 2.469598e-01 | 1.000000e+00 | 2.135231e-02 | 6.657676e-03 | 2048 | | LBFGS | 1 | 38 | 2.466941e-01 | 1.000000e+00 | 3.558719e-02 | 4.654690e-03 | 2048 | | LBFGS | 1 | 39 | 2.466660e-01 | 5.000000e-01 | 1.423488e-02 | 2.885769e-03 | 2048 | | LBFGS | 1 | 40 | 2.465605e-01 | 1.000000e+00 | 3.558719e-03 | 4.562565e-03 | 2048 | |=================================================================================================================| | Solver | Pass | Iteration | Objective | Step | Gradient | Relative | sum(beta~=0) | | | | | | | magnitude | change in Beta | | |=================================================================================================================| | LBFGS | 1 | 41 | 2.465362e-01 | 1.000000e+00 | 1.423488e-02 | 5.652180e-03 | 2048 | | LBFGS | 1 | 42 | 2.463528e-01 | 1.000000e+00 | 3.558719e-03 | 2.389759e-03 | 2048 | | LBFGS | 1 | 43 | 2.463207e-01 | 1.000000e+00 | 1.511170e-03 | 3.738286e-03 | 2048 | | LBFGS | 1 | 44 | 2.462585e-01 | 5.000000e-01 | 7.117438e-02 | 2.321693e-03 | 2048 | | LBFGS | 1 | 45 | 2.461742e-01 | 1.000000e+00 | 7.117438e-03 | 2.599725e-03 | 2048 | | LBFGS | 1 | 46 | 2.461434e-01 | 1.000000e+00 | 3.202847e-02 | 3.186923e-03 | 2048 | | LBFGS | 1 | 47 | 2.461115e-01 | 1.000000e+00 | 7.117438e-03 | 1.530711e-03 | 2048 | | LBFGS | 1 | 48 | 2.460814e-01 | 1.000000e+00 | 1.067616e-02 | 1.811714e-03 | 2048 | | LBFGS | 1 | 49 | 2.460533e-01 | 5.000000e-01 | 1.423488e-02 | 1.012252e-03 | 2048 | | LBFGS | 1 | 50 | 2.460111e-01 | 1.000000e+00 | 1.423488e-02 | 4.166762e-03 | 2048 | | LBFGS | 1 | 51 | 2.459414e-01 | 1.000000e+00 | 1.067616e-02 | 3.271946e-03 | 2048 | | LBFGS | 1 | 52 | 2.458809e-01 | 1.000000e+00 | 1.423488e-02 | 1.846440e-03 | 2048 | | LBFGS | 1 | 53 | 2.458479e-01 | 1.000000e+00 | 1.067616e-02 | 1.180871e-03 | 2048 | | LBFGS | 1 | 54 | 2.458146e-01 | 1.000000e+00 | 1.455008e-03 | 1.422954e-03 | 2048 | | LBFGS | 1 | 55 | 2.457878e-01 | 1.000000e+00 | 7.117438e-03 | 1.880892e-03 | 2048 | | LBFGS | 1 | 56 | 2.457519e-01 | 1.000000e+00 | 2.491103e-02 | 1.074764e-03 | 2048 | | LBFGS | 1 | 57 | 2.457420e-01 | 1.000000e+00 | 7.473310e-02 | 9.511878e-04 | 2048 | | LBFGS | 1 | 58 | 2.457212e-01 | 1.000000e+00 | 3.558719e-03 | 3.718564e-04 | 2048 | | LBFGS | 1 | 59 | 2.457089e-01 | 1.000000e+00 | 4.270463e-02 | 6.237270e-04 | 2048 | | LBFGS | 1 | 60 | 2.457047e-01 | 5.000000e-01 | 1.423488e-02 | 3.647573e-04 | 2048 | |=================================================================================================================| | Solver | Pass | Iteration | Objective | Step | Gradient | Relative | sum(beta~=0) | | | | | | | magnitude | change in Beta | | |=================================================================================================================| | LBFGS | 1 | 61 | 2.456991e-01 | 1.000000e+00 | 1.423488e-02 | 5.666884e-04 | 2048 | | LBFGS | 1 | 62 | 2.456898e-01 | 1.000000e+00 | 1.779359e-02 | 4.697056e-04 | 2048 | | LBFGS | 1 | 63 | 2.456792e-01 | 1.000000e+00 | 1.779359e-02 | 5.984927e-04 | 2048 | | LBFGS | 1 | 64 | 2.456603e-01 | 1.000000e+00 | 1.403782e-03 | 5.414985e-04 | 2048 | | LBFGS | 1 | 65 | 2.456482e-01 | 1.000000e+00 | 3.558719e-03 | 6.506293e-04 | 2048 | | LBFGS | 1 | 66 | 2.456358e-01 | 1.000000e+00 | 1.476262e-03 | 1.284139e-03 | 2048 | | LBFGS | 1 | 67 | 2.456124e-01 | 1.000000e+00 | 3.558719e-03 | 8.636596e-04 | 2048 | | LBFGS | 1 | 68 | 2.455980e-01 | 1.000000e+00 | 1.067616e-02 | 9.861527e-04 | 2048 | | LBFGS | 1 | 69 | 2.455780e-01 | 1.000000e+00 | 1.067616e-02 | 5.102487e-04 | 2048 | | LBFGS | 1 | 70 | 2.455633e-01 | 1.000000e+00 | 3.558719e-03 | 1.228077e-03 | 2048 | | LBFGS | 1 | 71 | 2.455449e-01 | 1.000000e+00 | 1.423488e-02 | 7.864590e-04 | 2048 | | LBFGS | 1 | 72 | 2.455261e-01 | 1.000000e+00 | 3.558719e-02 | 1.090815e-03 | 2048 | | LBFGS | 1 | 73 | 2.455142e-01 | 1.000000e+00 | 1.067616e-02 | 1.701506e-03 | 2048 | | LBFGS | 1 | 74 | 2.455075e-01 | 1.000000e+00 | 1.779359e-02 | 1.504577e-03 | 2048 | | LBFGS | 1 | 75 | 2.455008e-01 | 1.000000e+00 | 3.914591e-02 | 1.144021e-03 | 2048 | | LBFGS | 1 | 76 | 2.454943e-01 | 1.000000e+00 | 2.491103e-02 | 3.015254e-04 | 2048 | | LBFGS | 1 | 77 | 2.454918e-01 | 5.000000e-01 | 3.202847e-02 | 9.837523e-04 | 2048 | | LBFGS | 1 | 78 | 2.454870e-01 | 1.000000e+00 | 1.779359e-02 | 4.328953e-04 | 2048 | | LBFGS | 1 | 79 | 2.454865e-01 | 5.000000e-01 | 3.558719e-03 | 7.126815e-04 | 2048 | | LBFGS | 1 | 80 | 2.454775e-01 | 1.000000e+00 | 5.693950e-02 | 8.992562e-04 | 2048 | |=================================================================================================================| | Solver | Pass | Iteration | Objective | Step | Gradient | Relative | sum(beta~=0) | | | | | | | magnitude | change in Beta | | |=================================================================================================================| | LBFGS | 1 | 81 | 2.454686e-01 | 1.000000e+00 | 1.183730e-03 | 1.590246e-04 | 2048 | | LBFGS | 1 | 82 | 2.454612e-01 | 1.000000e+00 | 2.135231e-02 | 1.389570e-04 | 2048 | | LBFGS | 1 | 83 | 2.454506e-01 | 1.000000e+00 | 3.558719e-03 | 6.162089e-04 | 2048 | | LBFGS | 1 | 84 | 2.454436e-01 | 1.000000e+00 | 1.423488e-02 | 1.877414e-03 | 2048 | | LBFGS | 1 | 85 | 2.454378e-01 | 1.000000e+00 | 1.423488e-02 | 3.370852e-04 | 2048 | | LBFGS | 1 | 86 | 2.454249e-01 | 1.000000e+00 | 1.423488e-02 | 8.133615e-04 | 2048 | | LBFGS | 1 | 87 | 2.454101e-01 | 1.000000e+00 | 1.067616e-02 | 3.872088e-04 | 2048 | | LBFGS | 1 | 88 | 2.453963e-01 | 1.000000e+00 | 1.779359e-02 | 5.670260e-04 | 2048 | | LBFGS | 1 | 89 | 2.453866e-01 | 1.000000e+00 | 1.067616e-02 | 1.444984e-03 | 2048 | | LBFGS | 1 | 90 | 2.453821e-01 | 1.000000e+00 | 7.117438e-03 | 2.457270e-03 | 2048 | | LBFGS | 1 | 91 | 2.453790e-01 | 5.000000e-01 | 6.761566e-02 | 8.228766e-04 | 2048 | | LBFGS | 1 | 92 | 2.453603e-01 | 1.000000e+00 | 2.135231e-02 | 1.084233e-03 | 2048 | | LBFGS | 1 | 93 | 2.453540e-01 | 1.000000e+00 | 2.135231e-02 | 2.060005e-04 | 2048 | | LBFGS | 1 | 94 | 2.453482e-01 | 1.000000e+00 | 1.779359e-02 | 1.560883e-04 | 2048 | | LBFGS | 1 | 95 | 2.453461e-01 | 1.000000e+00 | 1.779359e-02 | 1.614693e-03 | 2048 | | LBFGS | 1 | 96 | 2.453371e-01 | 1.000000e+00 | 3.558719e-02 | 2.145835e-04 | 2048 | | LBFGS | 1 | 97 | 2.453305e-01 | 1.000000e+00 | 4.270463e-02 | 7.602088e-04 | 2048 | | LBFGS | 1 | 98 | 2.453283e-01 | 2.500000e-01 | 2.135231e-02 | 3.422253e-04 | 2048 | | LBFGS | 1 | 99 | 2.453246e-01 | 1.000000e+00 | 3.558719e-03 | 3.872561e-04 | 2048 | | LBFGS | 1 | 100 | 2.453214e-01 | 1.000000e+00 | 3.202847e-02 | 1.732237e-04 | 2048 | |=================================================================================================================| | Solver | Pass | Iteration | Objective | Step | Gradient | Relative | sum(beta~=0) | | | | | | | magnitude | change in Beta | | |=================================================================================================================| | LBFGS | 1 | 101 | 2.453168e-01 | 1.000000e+00 | 1.067616e-02 | 3.065286e-04 | 2048 | | LBFGS | 1 | 102 | 2.453155e-01 | 5.000000e-01 | 4.626335e-02 | 3.402368e-04 | 2048 | | LBFGS | 1 | 103 | 2.453136e-01 | 1.000000e+00 | 1.779359e-02 | 2.215029e-04 | 2048 | | LBFGS | 1 | 104 | 2.453119e-01 | 1.000000e+00 | 3.202847e-02 | 4.142355e-04 | 2048 | | LBFGS | 1 | 105 | 2.453093e-01 | 1.000000e+00 | 1.423488e-02 | 2.186007e-04 | 2048 | | LBFGS | 1 | 106 | 2.453090e-01 | 1.000000e+00 | 2.846975e-02 | 1.338602e-03 | 2048 | | LBFGS | 1 | 107 | 2.453048e-01 | 1.000000e+00 | 1.423488e-02 | 3.208296e-04 | 2048 | | LBFGS | 1 | 108 | 2.453040e-01 | 1.000000e+00 | 3.558719e-02 | 1.294488e-03 | 2048 | | LBFGS | 1 | 109 | 2.452977e-01 | 1.000000e+00 | 1.423488e-02 | 8.328380e-04 | 2048 | | LBFGS | 1 | 110 | 2.452934e-01 | 1.000000e+00 | 2.135231e-02 | 5.149259e-04 | 2048 | | LBFGS | 1 | 111 | 2.452886e-01 | 1.000000e+00 | 1.779359e-02 | 3.650664e-04 | 2048 | | LBFGS | 1 | 112 | 2.452854e-01 | 1.000000e+00 | 1.067616e-02 | 2.633981e-04 | 2048 | | LBFGS | 1 | 113 | 2.452836e-01 | 1.000000e+00 | 1.067616e-02 | 1.804300e-04 | 2048 | | LBFGS | 1 | 114 | 2.452817e-01 | 1.000000e+00 | 7.117438e-03 | 4.251642e-04 | 2048 | | LBFGS | 1 | 115 | 2.452741e-01 | 1.000000e+00 | 1.779359e-02 | 9.018440e-04 | 2048 | | LBFGS | 1 | 116 | 2.452691e-01 | 1.000000e+00 | 2.135231e-02 | 9.941716e-05 | 2048 | |=================================================================================================================|
Predict the test-set labels, construct a confusion matrix for the test set, and estimate the classification error for the test set.
UpdatedLabel = predict(UpdatedMdl,XTest); UpdatedConfusionTest = confusionchart(YTest,UpdatedLabel);
UpdatedL = loss(UpdatedMdl,XTest,YTest)
UpdatedL = 0.1284
The classification error decreases after resume
updates the classification model with more iterations.
You have a modified version of this example. Do you want to open this example with your edits?