Classification edge for cross-validated ECOC model
returns the classification edge
obtained by the cross-validated ECOC model (edge
= kfoldEdge(CVMdl
)ClassificationPartitionedECOC
) CVMdl
. For every
fold, kfoldEdge
computes the classification edge for
validation-fold observations using an ECOC model trained on training-fold
observations. CVMdl.X
contains both sets of observations.
returns the classification edge with additional options specified by one or more
name-value pair arguments. For example, specify the number of folds, decoding
scheme, or verbosity level.edge
= kfoldEdge(CVMdl
,Name,Value
)
Load Fisher's iris data set. Specify the predictor data X
, the response data Y
, and the order of the classes in Y
.
load fisheriris X = meas; Y = categorical(species); classOrder = unique(Y); rng(1); % For reproducibility
Train and cross-validate an ECOC model using support vector machine (SVM) binary classifiers. Standardize the predictor data using an SVM template, and specify the class order.
t = templateSVM('Standardize',1); CVMdl = fitcecoc(X,Y,'CrossVal','on','Learners',t,'ClassNames',classOrder);
CVMdl
is a ClassificationPartitionedECOC
model. By default, the software implements 10-fold cross-validation. You can specify a different number of folds using the 'KFold'
name-value pair argument.
Estimate the average of the edges.
edge = kfoldEdge(CVMdl)
edge = 0.4825
Alternatively, you can obtain the per-fold edges by specifying the name-value pair 'Mode','individual'
in kfoldEdge
.
The classification edge is a relative measure of classifier quality. To determine which folds perform poorly, display the edges for each fold.
Load Fisher's iris data set. Specify the predictor data X
, the response data Y
, and the order of the classes in Y
.
load fisheriris X = meas; Y = categorical(species); classOrder = unique(Y); rng(1); % For reproducibility
Train an ECOC model using SVM binary classifiers. Use 8-fold cross-validation, standardize the predictors using an SVM template, and specify the class order.
t = templateSVM('Standardize',1); CVMdl = fitcecoc(X,Y,'KFold',8,'Learners',t,'ClassNames',classOrder);
Estimate the classification edge for each fold.
edges = kfoldEdge(CVMdl,'Mode','individual')
edges = 8×1
0.4792
0.4872
0.4259
0.5302
0.5064
0.4575
0.4860
0.4687
The edges have similar magnitudes across folds. Folds that perform poorly have small edges relative to the other folds.
To return the average classification edge across the folds that perform well, specify the 'Folds'
name-value pair argument.
The classifier edge measures the average of the classifier margins. One way to perform feature selection is to compare cross-validation edges from multiple models. Based solely on this criterion, the classifier with the greatest edge is the best classifier.
Load Fisher's iris data set. Specify the predictor data X
, the response data Y
, and the order of the classes in Y
.
load fisheriris X = meas; Y = categorical(species); classOrder = unique(Y); % Class order rng(1); % For reproducibility
Define the following two data sets.
fullX
contains all the predictors.
partX
contains the petal dimensions.
fullX = X; partX = X(:,3:4);
For each predictor set, train and cross-validate an ECOC model using SVM binary classifiers. Standardize the predictors using an SVM template, and specify the class order.
t = templateSVM('Standardize',1); CVMdl = fitcecoc(fullX,Y,'CrossVal','on','Learners',t,... 'ClassNames',classOrder); PCVMdl = fitcecoc(partX,Y,'CrossVal','on','Learners',t,... 'ClassNames',classOrder);
CVMdl
and PCVMdl
are ClassificationPartitionedECOC
models. By default, the software implements 10-fold cross-validation.
Estimate the edge for each classifier.
fullEdge = kfoldEdge(CVMdl)
fullEdge = 0.4825
partEdge = kfoldEdge(PCVMdl)
partEdge = 0.4951
The two models have comparable edges.
CVMdl
— Cross-validated ECOC modelClassificationPartitionedECOC
modelCross-validated ECOC model, specified as a ClassificationPartitionedECOC
model. You can create a
ClassificationPartitionedECOC
model in two ways:
Pass a trained ECOC model (ClassificationECOC
) to crossval
.
Train an ECOC model using fitcecoc
and specify any one of
these cross-validation name-value pair arguments:
'CrossVal'
, 'CVPartition'
,
'Holdout'
, 'KFold'
, or
'Leaveout'
.
Specify optional
comma-separated pairs of Name,Value
arguments. Name
is
the argument name and Value
is the corresponding value.
Name
must appear inside quotes. You can specify several name and value
pair arguments in any order as
Name1,Value1,...,NameN,ValueN
.
kfoldEdge(CVMdl,'BinaryLoss','hinge')
specifies
'hinge'
as the binary learner loss function.'BinaryLoss'
— Binary learner loss function'hamming'
| 'linear'
| 'logit'
| 'exponential'
| 'binodeviance'
| 'hinge'
| 'quadratic'
| function handleBinary learner loss function, specified as the comma-separated pair consisting of
'BinaryLoss'
and a built-in loss function name or function handle.
This table describes the built-in functions, where yj is a class label for a particular binary learner (in the set {–1,1,0}), sj is the score for observation j, and g(yj,sj) is the binary loss formula.
Value | Description | Score Domain | g(yj,sj) |
---|---|---|---|
'binodeviance' | Binomial deviance | (–∞,∞) | log[1 + exp(–2yjsj)]/[2log(2)] |
'exponential' | Exponential | (–∞,∞) | exp(–yjsj)/2 |
'hamming' | Hamming | [0,1] or (–∞,∞) | [1 – sign(yjsj)]/2 |
'hinge' | Hinge | (–∞,∞) | max(0,1 – yjsj)/2 |
'linear' | Linear | (–∞,∞) | (1 – yjsj)/2 |
'logit' | Logistic | (–∞,∞) | log[1 + exp(–yjsj)]/[2log(2)] |
'quadratic' | Quadratic | [0,1] | [1 – yj(2sj – 1)]2/2 |
The software normalizes binary losses so that the loss is 0.5 when yj = 0. Also, the software calculates the mean binary loss for each class.
For a custom binary loss function, for example
customFunction
, specify its function handle
'BinaryLoss',@customFunction
.
customFunction
has this form:
bLoss = customFunction(M,s)
M
is the
K-by-L coding matrix
stored in Mdl.CodingMatrix
.
s
is the 1-by-L row
vector of classification scores.
bLoss
is the classification loss. This
scalar aggregates the binary losses for every learner in a
particular class. For example, you can use the mean binary loss
to aggregate the loss over the learners for each class.
K is the number of classes.
L is the number of binary learners.
For an example of passing a custom binary loss function, see Predict Test-Sample Labels of ECOC Model Using Custom Binary Loss Function.
The default BinaryLoss
value depends on the score ranges returned
by the binary learners. This table describes some default
BinaryLoss
values based on the given assumptions.
Assumption | Default Value |
---|---|
All binary learners are SVMs or either linear or kernel classification models of SVM learners. | 'hinge' |
All binary learners are ensembles trained by
AdaboostM1 or
GentleBoost . | 'exponential' |
All binary learners are ensembles trained by
LogitBoost . | 'binodeviance' |
All binary learners are linear or kernel classification models of
logistic regression learners. Or, you specify to predict class
posterior probabilities by setting
'FitPosterior',true in fitcecoc . | 'quadratic' |
To check the default value, use dot notation to display the
BinaryLoss
property of the trained model at the command
line.
Example: 'BinaryLoss','binodeviance'
Data Types: char
| string
| function_handle
'Decoding'
— Decoding scheme'lossweighted'
(default) | 'lossbased'
Decoding scheme that aggregates the binary losses, specified as the comma-separated pair
consisting of 'Decoding'
and 'lossweighted'
or
'lossbased'
. For more information, see Binary Loss.
Example: 'Decoding','lossbased'
'Folds'
— Fold indices for prediction1:CVMdl.KFold
(default) | numeric vector of positive integersFold indices for prediction, specified as the comma-separated pair consisting of
'Folds'
and a numeric vector of positive integers. The elements
of Folds
must be within the range from 1
to
CVMdl.KFold
.
The software uses only the folds specified in Folds
for
prediction.
Example: 'Folds',[1 4 10]
Data Types: single
| double
'Mode'
— Aggregation level for output'average'
(default) | 'individual'
Aggregation level for the output, specified as the comma-separated pair consisting of
'Mode'
and 'average'
or
'individual'
.
This table describes the values.
Value | Description |
---|---|
'average' | The output is a scalar average over all folds. |
'individual' | The output is a vector of length k containing one value per fold, where k is the number of folds. |
Example: 'Mode','individual'
'Options'
— Estimation options[]
(default) | structure array returned by statset
Estimation options, specified as the comma-separated pair consisting
of 'Options'
and a structure array returned by statset
.
To invoke parallel computing:
You need a Parallel Computing Toolbox™ license.
Specify 'Options',statset('UseParallel',true)
.
'Verbose'
— Verbosity level0
(default) | 1
Verbosity level, specified as the comma-separated pair consisting of
'Verbose'
and 0
or 1
.
Verbose
controls the number of diagnostic messages that the
software displays in the Command Window.
If Verbose
is 0
, then the software does not display
diagnostic messages. Otherwise, the software displays diagnostic messages.
Example: 'Verbose',1
Data Types: single
| double
edge
— Classification edgeClassification edge, returned as a numeric scalar or numeric column vector.
If Mode
is 'average'
, then
edge
is the average classification edge over all
folds. Otherwise, edge
is a k-by-1
numeric column vector containing the classification edge for each fold,
where k is the number of folds.
The classification edge is the weighted mean of the classification margins.
One way to choose among multiple classifiers, for example to perform feature selection, is to choose the classifier that yields the greatest edge.
The classification margin is, for each observation, the difference between the negative loss for the true class and the maximal negative loss among the false classes. If the margins are on the same scale, then they serve as a classification confidence measure. Among multiple classifiers, those that yield greater margins are better.
A binary loss is a function of the class and classification score that determines how well a binary learner classifies an observation into the class.
Suppose the following:
mkj is element (k,j) of the coding design matrix M (that is, the code corresponding to class k of binary learner j).
sj is the score of binary learner j for an observation.
g is the binary loss function.
is the predicted class for the observation.
In loss-based decoding [Escalera et al.], the class producing the minimum sum of the binary losses over binary learners determines the predicted class of an observation, that is,
In loss-weighted decoding [Escalera et al.], the class producing the minimum average of the binary losses over binary learners determines the predicted class of an observation, that is,
Allwein et al. suggest that loss-weighted decoding improves classification accuracy by keeping loss values for all classes in the same dynamic range.
This table summarizes the supported loss functions, where yj is a class label for a particular binary learner (in the set {–1,1,0}), sj is the score for observation j, and g(yj,sj).
Value | Description | Score Domain | g(yj,sj) |
---|---|---|---|
'binodeviance' | Binomial deviance | (–∞,∞) | log[1 + exp(–2yjsj)]/[2log(2)] |
'exponential' | Exponential | (–∞,∞) | exp(–yjsj)/2 |
'hamming' | Hamming | [0,1] or (–∞,∞) | [1 – sign(yjsj)]/2 |
'hinge' | Hinge | (–∞,∞) | max(0,1 – yjsj)/2 |
'linear' | Linear | (–∞,∞) | (1 – yjsj)/2 |
'logit' | Logistic | (–∞,∞) | log[1 + exp(–yjsj)]/[2log(2)] |
'quadratic' | Quadratic | [0,1] | [1 – yj(2sj – 1)]2/2 |
The software normalizes binary losses such that the loss is 0.5 when yj = 0, and aggregates using the average of the binary learners [Allwein et al.].
Do not confuse the binary loss with the overall classification loss (specified by the
'LossFun'
name-value pair argument of the loss
and
predict
object functions), which measures how well an ECOC classifier
performs as a whole.
[1] Allwein, E., R. Schapire, and Y. Singer. “Reducing multiclass to binary: A unifying approach for margin classifiers.” Journal of Machine Learning Research. Vol. 1, 2000, pp. 113–141.
[2] Escalera, S., O. Pujol, and P. Radeva. “On the decoding process in ternary error-correcting output codes.” IEEE Transactions on Pattern Analysis and Machine Intelligence. Vol. 32, Issue 7, 2010, pp. 120–134.
[3] Escalera, S., O. Pujol, and P. Radeva. “Separability of ternary codes for sparse designs of error-correcting output codes.” Pattern Recogn. Vol. 30, Issue 3, 2009, pp. 285–297.
To run in parallel, set the 'UseParallel'
option to true
.
Set the 'UseParallel'
field of the options structure to true
using statset
and specify the 'Options'
name-value pair argument in the call to this function.
For example: 'Options',statset('UseParallel',true)
For more information, see the 'Options'
name-value pair argument.
For more general information about parallel computing, see Run MATLAB Functions with Automatic Parallel Support (Parallel Computing Toolbox).
ClassificationECOC
| ClassificationPartitionedECOC
| edge
| fitcecoc
| kfoldMargin
| kfoldPredict
| statset
You have a modified version of this example. Do you want to open this example with your edits?