Classify observations in cross-validated ECOC model
returns class labels predicted by the cross-validated ECOC model (label
= kfoldPredict(CVMdl
)ClassificationPartitionedECOC
) CVMdl
. For every
fold, kfoldPredict
predicts class labels for observations that
it holds out during training. CVMdl.X
contains both sets of
observations.
The software predicts the classification of an observation by assigning the observation to the class yielding the largest negated average binary loss (or, equivalently, the smallest average binary loss).
returns predicted class labels with additional options specified by one or more
name-value pair arguments. For example, specify the posterior probability estimation
method, decoding scheme, or verbosity level.label
= kfoldPredict(CVMdl
,Name,Value
)
[
additionally returns negated values of the average binary loss per class
(label
,NegLoss
,PBScore
]
= kfoldPredict(___)NegLoss
) for validation-fold observations and
positive-class scores (PBScore
) for validation-fold
observations classified by each binary learner, using any of the input argument
combinations in the previous syntaxes.
If the coding matrix varies across folds (that is, the coding scheme is
sparserandom
or denserandom
), then
PBScore
is empty ([]
).
[
additionally returns posterior class probability estimates for validation-fold
observations (label
,NegLoss
,PBScore
,Posterior
]
= kfoldPredict(___)Posterior
).
To obtain posterior class probabilities, you must set
'FitPosterior',1
when training the cross-validated ECOC model
using fitcecoc
. Otherwise,
kfoldPredict
throws an error.
Load Fisher's iris data set. Specify the predictor data X
, the response data Y
, and the order of the classes in Y
.
load fisheriris X = meas; Y = categorical(species); classOrder = unique(Y); rng(1); % For reproducibility
Train and cross-validate an ECOC model using support vector machine (SVM) binary classifiers. Standardize the predictor data using an SVM template, and specify the class order.
t = templateSVM('Standardize',1); CVMdl = fitcecoc(X,Y,'CrossVal','on','Learners',t,'ClassNames',classOrder);
CVMdl
is a ClassificationPartitionedECOC
model. By default, the software implements 10-fold cross-validation. You can specify a different number of folds using the 'KFold'
name-value pair argument.
Predict the validation-fold labels. Print a random subset of true and predicted labels.
labels = kfoldPredict(CVMdl); idx = randsample(numel(labels),10); table(Y(idx),labels(idx),... 'VariableNames',{'TrueLabels','PredictedLabels'})
ans=10×2 table
TrueLabels PredictedLabels
__________ _______________
setosa setosa
versicolor versicolor
setosa setosa
virginica virginica
versicolor versicolor
setosa setosa
virginica virginica
virginica virginica
setosa setosa
setosa setosa
CVMdl
correctly labels the validation-fold observations with indices idx
.
Load Fisher's iris data set. Specify the predictor data X
, the response data Y
, and the order of the classes in Y
.
load fisheriris X = meas; Y = categorical(species); classOrder = unique(Y); % Class order K = numel(classOrder); % Number of classes rng(1); % For reproducibility
Train and cross-validate an ECOC model using SVM binary classifiers. Standardize the predictor data using an SVM template, and specify the class order.
t = templateSVM('Standardize',1); CVMdl = fitcecoc(X,Y,'CrossVal','on','Learners',t,'ClassNames',classOrder);
CVMdl
is a ClassificationPartitionedECOC
model. By default, the software implements 10-fold cross-validation. You can specify a different number of folds using the 'KFold'
name-value pair argument.
SVM scores are signed distances from the observation to the decision boundary. Therefore, the domain is . Create a custom binary loss function that:
Maps the coding design matrix (M) and positive-class classification scores (s) for each learner to the binary loss for each observation
Uses linear loss
Aggregates the binary learner loss using the median
You can create a separate function for the binary loss function, and then save it on the MATLAB® path. Alternatively, you can specify an anonymous binary loss function. In this case, create a function handle (customBL
) to an anonymous binary loss function.
customBL = @(M,s)nanmedian(1 - bsxfun(@times,M,s),2)/2;
Predict cross-validation labels and estimate the median binary loss per class. Print the median negative binary losses per class for a random set of 10 validation-fold observations.
[label,NegLoss] = kfoldPredict(CVMdl,'BinaryLoss',customBL);
idx = randsample(numel(label),10);
classOrder
classOrder = 3x1 categorical
setosa
versicolor
virginica
table(Y(idx),label(idx),NegLoss(idx,:),'VariableNames',... {'TrueLabel','PredictedLabel','NegLoss'})
ans=10×3 table
TrueLabel PredictedLabel NegLoss
__________ ______________ _________________________________
setosa versicolor 0.37141 2.1296 -4.001
versicolor versicolor -1.2166 0.36678 -0.65021
setosa versicolor 0.23932 2.0793 -3.8186
virginica virginica -1.9151 -0.19953 0.61467
versicolor versicolor -1.3745 0.45532 -0.58077
setosa versicolor 0.20061 2.2774 -3.978
virginica versicolor -1.4926 0.090706 -0.098127
virginica virginica -1.7667 -0.13466 0.40134
setosa versicolor 0.20011 1.9111 -3.6112
setosa versicolor 0.16118 1.9679 -3.6291
The order of the columns corresponds to the elements of classOrder
. The software predicts the label based on the maximum negated loss. The results indicate that the median of the linear losses might not perform as well as other losses.
Load Fisher's iris data set. Use the petal dimensions as the predictor data X
. Specify the response data Y
and the order of the classes in Y
.
load fisheriris X = meas(:,3:4); Y = categorical(species); classOrder = unique(Y); rng(1); % For reproducibility
Create an SVM template. Standardize the predictors, and specify the Gaussian kernel.
t = templateSVM('Standardize',1,'KernelFunction','gaussian');
t
is an SVM template. Most of its properties are empty. When training the ECOC classifier, the software sets the applicable properties to their default values.
Train and cross-validate an ECOC classifier using the SVM template. Transform classification scores to class posterior probabilities (returned by kfoldPredict
) using the 'FitPosterior'
name-value pair argument. Specify the class order.
CVMdl = fitcecoc(X,Y,'Learners',t,'CrossVal','on','FitPosterior',true,... 'ClassNames',classOrder);
CVMdl
is a ClassificationPartitionedECOC
model. By default, the software uses 10-fold cross-validation.
Predict the validation-fold class posterior probabilities. Use 10 random initial values for the Kullback-Leibler algorithm.
[label,~,~,Posterior] = kfoldPredict(CVMdl,'NumKLInitializations',10);
The software assigns an observation to the class that yields the smallest average binary loss. Because all the binary learners compute posterior probabilities, the binary loss function is quadratic
.
Display a random set of results.
idx = randsample(size(X,1),10); CVMdl.ClassNames
ans = 3x1 categorical
setosa
versicolor
virginica
table(Y(idx),label(idx),Posterior(idx,:),... 'VariableNames',{'TrueLabel','PredLabel','Posterior'})
ans=10×3 table
TrueLabel PredLabel Posterior
__________ __________ ______________________________________
versicolor versicolor 0.0086404 0.98243 0.0089302
versicolor virginica 2.2197e-14 0.12437 0.87563
setosa setosa 0.999 0.00022837 0.00076884
versicolor versicolor 2.2194e-14 0.98916 0.010845
virginica virginica 0.012316 0.012923 0.97476
virginica virginica 0.0015569 0.0015636 0.99688
virginica virginica 0.0042886 0.0043547 0.99136
setosa setosa 0.999 0.00028329 0.00071382
virginica virginica 0.0094736 0.0098247 0.9807
setosa setosa 0.999 0.00013558 0.00086196
The columns of Posterior
correspond to the class order of CVMdl.ClassNames
.
Train a multiclass ECOC model and estimate the posterior probabilities using parallel computing.
Load the arrhythmia
data set. Examine the response data Y
.
load arrhythmia
Y = categorical(Y);
tabulate(Y)
Value Count Percent 1 245 54.20% 2 44 9.73% 3 15 3.32% 4 15 3.32% 5 13 2.88% 6 25 5.53% 7 3 0.66% 8 2 0.44% 9 9 1.99% 10 50 11.06% 14 4 0.88% 15 5 1.11% 16 22 4.87%
n = numel(Y); K = numel(unique(Y));
Several classes are not represented in the data, and many of the other classes have low relative frequencies.
Specify an ensemble learning template that uses the GentleBoost method and 50 weak classification tree learners.
t = templateEnsemble('GentleBoost',50,'Tree');
t
is a template object. Most of the options are empty ([]
). The software uses default values for all empty options during training.
Because the response variable contains many classes, specify a sparse random coding design.
rng(1); % For reproducibility Coding = designecoc(K,'sparserandom');
Train and cross-validate an ECOC model using parallel computing. Fit posterior probabilities (returned by kfoldPredict
).
pool = parpool; % Invokes workers
Starting parallel pool (parpool) using the 'local' profile ... connected to 6 workers.
options = statset('UseParallel',1); CVMdl = fitcecoc(X,Y,'Learner',t,'Options',options,'Coding',Coding,... 'FitPosterior',1,'CrossVal','on');
Warning: One or more folds do not contain points from all the groups.
CVMdl
is a ClassificationPartitionedECOC
model. By default, the software implements 10-fold cross-validation. You can specify a different number of folds using the 'KFold'
name-value pair argument.
The pool invokes six workers, although the number of workers might vary among systems. Because some classes have low relative frequency, one or more folds most likely do not contain observations from all classes.
Estimate posterior probabilities, and display the posterior probability of being classified as not having arrhythmia (class 1) given the data for a random set of validation-fold observations.
[~,~,~,posterior] = kfoldPredict(CVMdl,'Options',options); idx = randsample(n,10); table(idx,Y(idx),posterior(idx,1),... 'VariableNames',{'OOFSampleIndex','TrueLabel','PosteriorNoArrhythmia'})
ans=10×3 table
OOFSampleIndex TrueLabel PosteriorNoArrhythmia
______________ _________ _____________________
171 1 0.33654
221 1 0.85135
72 16 0.9174
3 10 0.025649
202 1 0.8438
243 1 0.9435
18 1 0.81198
49 6 0.090154
234 1 0.61625
315 1 0.97187
CVMdl
— Cross-validated ECOC modelClassificationPartitionedECOC
modelCross-validated ECOC model, specified as a ClassificationPartitionedECOC
model. You can create a
ClassificationPartitionedECOC
model in two ways:
Pass a trained ECOC model (ClassificationECOC
) to crossval
.
Train an ECOC model using fitcecoc
and specify any one of
these cross-validation name-value pair arguments:
'CrossVal'
, 'CVPartition'
,
'Holdout'
, 'KFold'
, or
'Leaveout'
.
Specify optional
comma-separated pairs of Name,Value
arguments. Name
is
the argument name and Value
is the corresponding value.
Name
must appear inside quotes. You can specify several name and value
pair arguments in any order as
Name1,Value1,...,NameN,ValueN
.
kfoldPredict(CVMdl,'PosteriorMethod','qp')
specifies to
estimate multiclass posterior probabilities by solving a least-squares problem using
quadratic programming.'BinaryLoss'
— Binary learner loss function'hamming'
| 'linear'
| 'logit'
| 'exponential'
| 'binodeviance'
| 'hinge'
| 'quadratic'
| function handleBinary learner loss function, specified as the comma-separated pair consisting of
'BinaryLoss'
and a built-in loss function name or function handle.
This table describes the built-in functions, where yj is a class label for a particular binary learner (in the set {–1,1,0}), sj is the score for observation j, and g(yj,sj) is the binary loss formula.
Value | Description | Score Domain | g(yj,sj) |
---|---|---|---|
'binodeviance' | Binomial deviance | (–∞,∞) | log[1 + exp(–2yjsj)]/[2log(2)] |
'exponential' | Exponential | (–∞,∞) | exp(–yjsj)/2 |
'hamming' | Hamming | [0,1] or (–∞,∞) | [1 – sign(yjsj)]/2 |
'hinge' | Hinge | (–∞,∞) | max(0,1 – yjsj)/2 |
'linear' | Linear | (–∞,∞) | (1 – yjsj)/2 |
'logit' | Logistic | (–∞,∞) | log[1 + exp(–yjsj)]/[2log(2)] |
'quadratic' | Quadratic | [0,1] | [1 – yj(2sj – 1)]2/2 |
The software normalizes binary losses so that the loss is 0.5 when yj = 0. Also, the software calculates the mean binary loss for each class.
For a custom binary loss function, for example
customFunction
, specify its function handle
'BinaryLoss',@customFunction
.
customFunction
has this form:
bLoss = customFunction(M,s)
M
is the
K-by-L coding matrix
stored in Mdl.CodingMatrix
.
s
is the 1-by-L row
vector of classification scores.
bLoss
is the classification loss. This
scalar aggregates the binary losses for every learner in a
particular class. For example, you can use the mean binary loss
to aggregate the loss over the learners for each class.
K is the number of classes.
L is the number of binary learners.
For an example of passing a custom binary loss function, see Predict Test-Sample Labels of ECOC Model Using Custom Binary Loss Function.
The default BinaryLoss
value depends on the score ranges returned
by the binary learners. This table describes some default
BinaryLoss
values based on the given assumptions.
Assumption | Default Value |
---|---|
All binary learners are SVMs or either linear or kernel classification models of SVM learners. | 'hinge' |
All binary learners are ensembles trained by
AdaboostM1 or
GentleBoost . | 'exponential' |
All binary learners are ensembles trained by
LogitBoost . | 'binodeviance' |
All binary learners are linear or kernel classification models of
logistic regression learners. Or, you specify to predict class
posterior probabilities by setting
'FitPosterior',true in fitcecoc . | 'quadratic' |
To check the default value, use dot notation to display the
BinaryLoss
property of the trained model at the command
line.
Example: 'BinaryLoss','binodeviance'
Data Types: char
| string
| function_handle
'Decoding'
— Decoding scheme'lossweighted'
(default) | 'lossbased'
Decoding scheme that aggregates the binary losses, specified as the comma-separated pair
consisting of 'Decoding'
and 'lossweighted'
or
'lossbased'
. For more information, see Binary Loss.
Example: 'Decoding','lossbased'
'NumKLInitializations'
— Number of random initial values0
(default) | nonnegative integer scalarNumber of random initial values for fitting posterior probabilities by Kullback-Leibler
divergence minimization, specified as the comma-separated pair consisting of
'NumKLInitializations'
and a nonnegative integer scalar.
If you do not request the fourth output argument (Posterior
) and set
'PosteriorMethod','kl'
(the default), then the software ignores
the value of NumKLInitializations
.
For more details, see Posterior Estimation Using Kullback-Leibler Divergence.
Example: 'NumKLInitializations',5
Data Types: single
| double
'Options'
— Estimation options[]
(default) | structure array returned by statset
Estimation options, specified as the comma-separated pair consisting
of 'Options'
and a structure array returned by statset
.
To invoke parallel computing:
You need a Parallel Computing Toolbox™ license.
Specify 'Options',statset('UseParallel',true)
.
'PosteriorMethod'
— Posterior probability estimation method'kl'
(default) | 'qp'
Posterior probability estimation method, specified as the comma-separated
pair consisting of 'PosteriorMethod'
and 'kl'
or 'qp'
.
If PosteriorMethod
is 'kl'
, then
the software estimates multiclass posterior probabilities by minimizing the
Kullback-Leibler divergence between the predicted and expected posterior
probabilities returned by binary learners. For details, see Posterior Estimation Using Kullback-Leibler Divergence.
If PosteriorMethod
is 'qp'
, then
the software estimates multiclass posterior probabilities by solving a
least-squares problem using quadratic programming. You need an Optimization Toolbox™ license to use this option. For details, see Posterior Estimation Using Quadratic Programming.
If you do not request the fourth output argument
(Posterior
), then the software ignores the value of
PosteriorMethod
.
Example: 'PosteriorMethod','qp'
'Verbose'
— Verbosity level0
(default) | 1
Verbosity level, specified as the comma-separated pair consisting of
'Verbose'
and 0
or 1
.
Verbose
controls the number of diagnostic messages that the
software displays in the Command Window.
If Verbose
is 0
, then the software does not display
diagnostic messages. Otherwise, the software displays diagnostic messages.
Example: 'Verbose',1
Data Types: single
| double
label
— Predicted class labelsPredicted class labels, returned as a categorical or character array, logical or numeric vector, or cell array of character vectors.
label
has the same data type and number of rows as
CVMdl.Y
.
The software predicts the classification of an observation by assigning the observation to the class yielding the largest negated average binary loss (or, equivalently, the smallest average binary loss).
NegLoss
— Negated average binary lossesNegated average binary losses, returned as a numeric matrix.
NegLoss
is an
n-by-K matrix, where
n is the number of observations
(size(CVMdl.X,1)
) and K is the
number of unique classes
(size(CVMdl.ClassNames,1)
).
PBScore
— Positive-class scoresPositive-class scores for each binary learner, returned as a numeric
matrix. PBScore
is an
n-by-L matrix, where
n is the number of observations
(size(CVMdl.X,1)
) and L is the
number of binary learners
(size(CVMdl.CodingMatrix,2)
).
If the coding matrix varies across folds (that is, the coding scheme is
sparserandom
or denserandom
), then
PBScore
is empty ([]
).
Posterior
— Posterior class probabilitiesPosterior class probabilities, returned as a numeric matrix.
Posterior
is an
n-by-K matrix, where
n is the number of observations
(size(CVMdl.X,1)
) and K is the
number of unique classes
(size(CVMdl.ClassNames,1)
).
You must set 'FitPosterior',1
when training the
cross-validated ECOC model using fitcecoc
in order to request
Posterior
. Otherwise, the software throws an
error.
A binary loss is a function of the class and classification score that determines how well a binary learner classifies an observation into the class.
Suppose the following:
mkj is element (k,j) of the coding design matrix M (that is, the code corresponding to class k of binary learner j).
sj is the score of binary learner j for an observation.
g is the binary loss function.
is the predicted class for the observation.
In loss-based decoding [Escalera et al.], the class producing the minimum sum of the binary losses over binary learners determines the predicted class of an observation, that is,
In loss-weighted decoding [Escalera et al.], the class producing the minimum average of the binary losses over binary learners determines the predicted class of an observation, that is,
Allwein et al. suggest that loss-weighted decoding improves classification accuracy by keeping loss values for all classes in the same dynamic range.
This table summarizes the supported loss functions, where yj is a class label for a particular binary learner (in the set {–1,1,0}), sj is the score for observation j, and g(yj,sj).
Value | Description | Score Domain | g(yj,sj) |
---|---|---|---|
'binodeviance' | Binomial deviance | (–∞,∞) | log[1 + exp(–2yjsj)]/[2log(2)] |
'exponential' | Exponential | (–∞,∞) | exp(–yjsj)/2 |
'hamming' | Hamming | [0,1] or (–∞,∞) | [1 – sign(yjsj)]/2 |
'hinge' | Hinge | (–∞,∞) | max(0,1 – yjsj)/2 |
'linear' | Linear | (–∞,∞) | (1 – yjsj)/2 |
'logit' | Logistic | (–∞,∞) | log[1 + exp(–yjsj)]/[2log(2)] |
'quadratic' | Quadratic | [0,1] | [1 – yj(2sj – 1)]2/2 |
The software normalizes binary losses such that the loss is 0.5 when yj = 0, and aggregates using the average of the binary learners [Allwein et al.].
Do not confuse the binary loss with the overall classification loss (specified by the
'LossFun'
name-value pair argument of the loss
and
predict
object functions), which measures how well an ECOC classifier
performs as a whole.
The software can estimate class posterior probabilities by minimizing the Kullback-Leibler divergence or by using quadratic programming. For the following descriptions of the posterior estimation algorithms, assume that:
mkj is the element (k,j) of the coding design matrix M.
I is the indicator function.
is the class posterior probability estimate for class k of an observation, k = 1,...,K.
rj is the positive-class posterior probability for binary learner j. That is, rj is the probability that binary learner j classifies an observation into the positive class, given the training data.
By default, the software minimizes the Kullback-Leibler divergence to estimate class posterior probabilities. The Kullback-Leibler divergence between the expected and observed positive-class posterior probabilities is
where is the weight for binary learner j.
Sj is the set of observation indices on which binary learner j is trained.
is the weight of observation i.
The software minimizes the divergence iteratively. The first step is to choose initial values for the class posterior probabilities.
If you do not specify 'NumKLIterations'
, then the software
tries both sets of deterministic initial values described next, and selects the
set that minimizes Δ.
is the solution of the system
where
M01 is
M with all
mkj = –1 replaced
with 0, and r is a vector of positive-class
posterior probabilities returned by the L binary
learners [Dietterich et al.]. The software uses lsqnonneg
to solve
the system.
If you specify 'NumKLIterations',c
, where
c
is a natural number, then the software does the
following to choose the set , and selects the set that minimizes Δ.
The software tries both sets of deterministic initial values as described previously.
The software randomly generates c
vectors of
length K using rand
, and then
normalizes each vector to sum to 1.
At iteration t, the software completes these steps:
Compute
Estimate the next class posterior probability using
Normalize so that they sum to 1.
Check for convergence.
For more details, see [Hastie et al.] and [Zadrozny].
Posterior probability estimation using quadratic programming requires an Optimization Toolbox license. To estimate posterior probabilities for an observation using this method, the software completes these steps:
Estimate the positive-class posterior probabilities, rj, for binary learners j = 1,...,L.
Using the relationship between rj and [Wu et al.], minimize
with respect to and the restrictions
The software performs minimization using quadprog
(Optimization Toolbox).
[1] Allwein, E., R. Schapire, and Y. Singer. “Reducing multiclass to binary: A unifying approach for margin classifiers.” Journal of Machine Learning Research. Vol. 1, 2000, pp. 113–141.
[2] Dietterich, T., and G. Bakiri. “Solving Multiclass Learning Problems Via Error-Correcting Output Codes.” Journal of Artificial Intelligence Research. Vol. 2, 1995, pp. 263–286.
[3] Escalera, S., O. Pujol, and P. Radeva. “On the decoding process in ternary error-correcting output codes.” IEEE Transactions on Pattern Analysis and Machine Intelligence. Vol. 32, Issue 7, 2010, pp. 120–134.
[4] Escalera, S., O. Pujol, and P. Radeva. “Separability of ternary codes for sparse designs of error-correcting output codes.” Pattern Recogn. Vol. 30, Issue 3, 2009, pp. 285–297.
[5] Hastie, T., and R. Tibshirani. “Classification by Pairwise Coupling.” Annals of Statistics. Vol. 26, Issue 2, 1998, pp. 451–471.
[6] Wu, T. F., C. J. Lin, and R. Weng. “Probability Estimates for Multi-Class Classification by Pairwise Coupling.” Journal of Machine Learning Research. Vol. 5, 2004, pp. 975–1005.
[7] Zadrozny, B. “Reducing Multiclass to Binary by Coupling Probability Estimates.” NIPS 2001: Proceedings of Advances in Neural Information Processing Systems 14, 2001, pp. 1041–1048.
To run in parallel, set the 'UseParallel'
option to true
.
Set the 'UseParallel'
field of the options structure to true
using statset
and specify the 'Options'
name-value pair argument in the call to this function.
For example: 'Options',statset('UseParallel',true)
For more information, see the 'Options'
name-value pair argument.
For more general information about parallel computing, see Run MATLAB Functions with Automatic Parallel Support (Parallel Computing Toolbox).
ClassificationECOC
| ClassificationPartitionedECOC
| edge
| fitcecoc
| predict
| statset
| quadprog
(Optimization Toolbox)
You have a modified version of this example. Do you want to open this example with your edits?