Convert RGB image to indexed image
Uniform Quantization — If you specify tol
, then
rgb2ind
uses uniform quantization to convert the image.
Uniform quantization cuts the RGB color cube into smaller cubes of length
tol
. For example, if you specify a tol
of 0.1, then the edges of the cubes are one-tenth the length of the RGB cube.
The total number of small cubes is:
t = (floor(1/tol)+1)^3
Each cube represents a single color in the output image. Therefore,
t
is the maximum length of the colormap .
rgb2ind
removes any colors that don’t appear in the input
image, so the actual colormap can be smaller than t
.
Minimum Variance Quantization — If you specify Q
,
then rgb2ind
uses minimum variance quantization. Minimum
variance quantization cuts the RGB color cube into smaller boxes (not
necessarily cubes) of different sizes, depending on how the colors are
distributed in the image. If the input image actually uses fewer colors than the
number specified, then the output colormap is also smaller.
Inverse Colormap — If you specify an input colormap
inmap
, then rgb2ind
uses colormap
mapping. The inverse colormap algorithm quantizes the specified colormap into 32
distinct levels per color component. Then, for each pixel in the input image,
the closest color in the quantized colormap is found.
[1] Spencer W. Thomas, "Efficient Inverse Color Map Computation", Graphics Gems II, (ed. James Arvo), Academic Press: Boston. 1991. (includes source code)
cmunique
| dither
| imapprox
| ind2rgb