3-D point or line plot
plot3(
assigns specific line styles, markers, and colors to each X
1,Y
1,Z
1,LineSpec
1,...,X
n,Y
n,Z
n,LineSpec
n)XYZ
triplet.
You can specify LineSpec
for some triplets and omit it for others. For
example, plot3(X1,Y1,Z1,'o',X2,Y2,Z2)
specifies markers for the first
triplet but not the for the second triplet.
plot3(___,
specifies
Name,Value
)Line
properties using one or more name-value pair arguments. Specify
the properties after all other input arguments. For a list of properties, see Line Properties.
plot3(
displays the plot in
the target axes. Specify the axes as the first argument in any of the previous
syntaxes.ax
,___)
returns a
p
= plot3(___)Line
object or an array of Line
objects. Use
p
to modify properties of the plot after creating it. For a list of
properties, see Line Properties.
Define t
as a vector of values between 0 and 10. Define st
and ct
as vectors of sine and cosine values. Then plot st
, ct
, and t
.
t = 0:pi/50:10*pi; st = sin(t); ct = cos(t); plot3(st,ct,t)
Create two sets of x-, y-, and z-coordinates.
t = 0:pi/500:pi; xt1 = sin(t).*cos(10*t); yt1 = sin(t).*sin(10*t); zt1 = cos(t); xt2 = sin(t).*cos(12*t); yt2 = sin(t).*sin(12*t); zt2 = cos(t);
Call the plot3
function, and specify consecutive XYZ
triplets.
plot3(xt1,yt1,zt1,xt2,yt2,zt2)
Create matrix X
containing three rows of x-coordinates. Create matrix Y
containing three rows of y-coordinates.
t = 0:pi/500:pi; X(1,:) = sin(t).*cos(10*t); X(2,:) = sin(t).*cos(12*t); X(3,:) = sin(t).*cos(20*t); Y(1,:) = sin(t).*sin(10*t); Y(2,:) = sin(t).*sin(12*t); Y(3,:) = sin(t).*sin(20*t);
Create matrix Z
containing the z-coordinates for all three sets.
Z = cos(t);
Plot all three sets of coordinates on the same set of axes.
plot3(X,Y,Z)
Create vectors xt
, yt
, and zt
.
t = 0:pi/500:40*pi; xt = (3 + cos(sqrt(32)*t)).*cos(t); yt = sin(sqrt(32) * t); zt = (3 + cos(sqrt(32)*t)).*sin(t);
Plot the data, and use the axis equal
command to space the tick units equally along each axis. Then specify the labels for each axis.
plot3(xt,yt,zt) axis equal xlabel('x(t)') ylabel('y(t)') zlabel('z(t)')
Create vectors t
, xt
, and yt
, and plot the points in those vectors using circular markers.
t = 0:pi/20:10*pi;
xt = sin(t);
yt = cos(t);
plot3(xt,yt,t,'o')
Create vectors t
, xt
, and yt
, and plot the points in those vectors as a blue line with 10-point circular markers. Use a hexadecimal color code to specify a light blue fill color for the markers.
t = 0:pi/20:10*pi; xt = sin(t); yt = cos(t); plot3(xt,yt,t,'-o','Color','b','MarkerSize',10,'MarkerFaceColor','#D9FFFF')
Create vector t
. Then use t
to calculate two sets of x and y values.
t = 0:pi/20:10*pi; xt1 = sin(t); yt1 = cos(t); xt2 = sin(2*t); yt2 = cos(2*t);
Plot the two sets of values. Use the default line for the first set, and specify a dashed line for the second set.
plot3(xt1,yt1,t,xt2,yt2,t,'--')
Create vectors t
, xt
, and yt
, and plot the data in those vectors. Return the chart line in the output variable p
.
t = linspace(-10,10,1000); xt = exp(-t./10).*sin(5*t); yt = exp(-t./10).*cos(5*t); p = plot3(xt,yt,t);
Change the line width to 3
.
p.LineWidth = 3;
Starting in R2019b, you can display a tiling of plots using the tiledlayout
and nexttile
functions. Call the tiledlayout
function to create a 1-by-2 tiled chart layout. Call the nexttile
function to create the axes objects ax1
and ax2
. Create separate line plots in the axes by specifying the axes object as the first argument to plot
3.
tiledlayout(1,2) % Left plot ax1 = nexttile; t = 0:pi/20:10*pi; xt1 = sin(t); yt1 = cos(t); plot3(ax1,xt1,yt1,t) title(ax1,'Helix With 5 Turns') % Right plot ax2 = nexttile; t = 0:pi/20:10*pi; xt2 = sin(2*t); yt2 = cos(2*t); plot3(ax2,xt2,yt2,t) title(ax2,'Helix With 10 Turns')
Create x
and y
as vectors of random values between 0
and 1
. Create z
as a vector of random duration values.
x = rand(1,10); y = rand(1,10); z = duration(rand(10,1),randi(60,10,1),randi(60,10,1));
Plot x
, y
, and z
, and specify the format for the z-axis as minutes and seconds. Then add axis labels, and turn on the grid to make it easier to visualize the points within the plot box.
plot3(x,y,z,'o','DurationTickFormat','mm:ss') xlabel('X') ylabel('Y') zlabel('Duration') grid on
Create vectors xt
, yt
, and zt
. Plot the values, specifying a solid line with circular markers using the LineSpec
argument. Specify the MarkerIndices
property to place one marker at the 200th data point.
t = 0:pi/500:pi; xt(1,:) = sin(t).*cos(10*t); yt(1,:) = sin(t).*sin(10*t); zt = cos(t); plot3(xt,yt,zt,'-o','MarkerIndices',200)
X
— x-coordinatesx-coordinates, specified as a scalar, vector, or matrix. The size
and shape of X
depends on the shape of your data and the type of plot
you want to create. This table describes the most common situations.
Type of Plot | How to Specify Coordinates |
---|---|
Single point | Specify plot3(1,2,3,'o') |
One set of points | Specify plot3([1 2 3],[4; 5; 6],[7 8 9]) |
Multiple sets of points (using vectors) | Specify consecutive sets of plot3([1 2 3],[4 5 6],[7 8 9],[1 2 3],[4 5 6],[10 11 12]) |
Multiple sets of points (using matrices) | Specify at least one of plot3([1 2 3],[4 5 6],[7 8 9; 10 11 12]) |
Data Types: single
| double
| int8
| int16
| int32
| int64
| uint8
| uint16
| uint32
| uint64
| categorical
| datetime
| duration
Y
— y-coordinatesy-coordinates, specified as a scalar, vector, or matrix. The size
and shape of Y
depends on the shape of your data and the type of plot
you want to create. This table describes the most common situations.
Type of Plot | How to Specify Coordinates |
---|---|
Single point | Specify plot3(1,2,3,'o') |
One set of points | Specify plot3([1 2 3],[4; 5; 6],[7 8 9]) |
Multiple sets of points (using vectors) | Specify consecutive sets of plot3([1 2 3],[4 5 6],[7 8 9],[1 2 3],[4 5 6],[10 11 12]) |
Multiple sets of points (using matrices) | Specify at least one of plot3([1 2 3],[4 5 6],[7 8 9; 10 11 12]) |
Data Types: single
| double
| int8
| int16
| int32
| int64
| uint8
| uint16
| uint32
| uint64
| categorical
| datetime
| duration
Z
— z-coordinatesz-coordinates, specified as a scalar, vector, or matrix. The size
and shape of Z
depends on the shape of your data and the type of plot
you want to create. This table describes the most common situations.
Type of Plot | How to Specify Coordinates |
---|---|
Single point | Specify plot3(1,2,3,'o') |
One set of points | Specify plot3([1 2 3],[4; 5; 6],[7 8 9]) |
Multiple sets of points (using vectors) | Specify consecutive sets of plot3([1 2 3],[4 5 6],[7 8 9],[1 2 3],[4 5 6],[10 11 12]) |
Multiple sets of points (using matrices) | Specify at least one of plot3([1 2 3],[4 5 6],[7 8 9; 10 11 12]) |
Data Types: single
| double
| int8
| int16
| int32
| int64
| uint8
| uint16
| uint32
| uint64
| categorical
| datetime
| duration
LineSpec
— Line style, marker, and colorLine style, marker, and color, specified as a character vector or string containing symbols. The symbols can appear in any order. You do not need to specify all three characteristics (line style, marker, and color). For example, if you omit the line style and specify the marker, then the plot shows only the marker and no line.
Example: '--or'
is a red dashed line with circle markers
Line Style | Description |
---|---|
- | Solid line |
-- | Dashed line |
: | Dotted line |
-. | Dash-dot line |
Marker | Description |
---|---|
'o' | Circle |
'+' | Plus sign |
'*' | Asterisk |
'.' | Point |
'x' | Cross |
'_' | Horizontal line |
'|' | Vertical line |
's' | Square |
'd' | Diamond |
'^' | Upward-pointing triangle |
'v' | Downward-pointing triangle |
'>' | Right-pointing triangle |
'<' | Left-pointing triangle |
'p' | Pentagram |
'h' | Hexagram |
Color | Description |
---|---|
| yellow |
| magenta |
| cyan |
| red |
| green |
| blue |
| white |
| black |
ax
— Target axesAxes
objectTarget axes, specified as an Axes
object. If you do not specify
the axes and if the current axes is Cartesian, then plot3
uses the
current axes.
Specify optional
comma-separated pairs of Name,Value
arguments. Name
is
the argument name and Value
is the corresponding value.
Name
must appear inside quotes. You can specify several name and value
pair arguments in any order as
Name1,Value1,...,NameN,ValueN
.
plot3([1 2],[3 4],[5 6],'Color','red')
specifies a red line
for the plot.Note
The properties listed here are only a subset. For a complete list, see Line Properties.
'Color'
— Color[0 0.4470 0.7410]
(default) | RGB triplet | hexadecimal color code | 'r'
| 'g'
| 'b'
| ...Color, specified as an RGB triplet, a hexadecimal color code, a color name, or a
short name. The color you specify sets the line color. It also sets the marker edge
color when the MarkerEdgeColor
property is set to
'auto'
.
For a custom color, specify an RGB triplet or a hexadecimal color code.
An RGB triplet is a three-element row vector whose elements
specify the intensities of the red, green, and blue
components of the color. The intensities must be in the
range [0,1]
; for example, [0.4
0.6 0.7]
.
A hexadecimal color code is a character vector or a string
scalar that starts with a hash symbol (#
)
followed by three or six hexadecimal digits, which can range
from 0
to F
. The
values are not case sensitive. Thus, the color codes
'#FF8800'
,
'#ff8800'
,
'#F80'
, and
'#f80'
are equivalent.
Alternatively, you can specify some common colors by name. This table lists the named color options, the equivalent RGB triplets, and hexadecimal color codes.
Color Name | Short Name | RGB Triplet | Hexadecimal Color Code | Appearance |
---|---|---|---|---|
'red' | 'r' | [1 0 0] | '#FF0000' | |
'green' | 'g' | [0 1 0] | '#00FF00' | |
'blue' | 'b' | [0 0 1] | '#0000FF' | |
'cyan'
| 'c' | [0 1 1] | '#00FFFF' | |
'magenta' | 'm' | [1 0 1] | '#FF00FF' | |
'yellow' | 'y' | [1 1 0] | '#FFFF00' | |
'black' | 'k' | [0 0 0] | '#000000' | |
'white' | 'w' | [1 1 1] | '#FFFFFF' | |
'none' | Not applicable | Not applicable | Not applicable | No color |
Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB® uses in many types of plots.
RGB Triplet | Hexadecimal Color Code | Appearance |
---|---|---|
[0 0.4470 0.7410] | '#0072BD' | |
[0.8500 0.3250 0.0980] | '#D95319' | |
[0.9290 0.6940 0.1250] | '#EDB120' | |
[0.4940 0.1840 0.5560] | '#7E2F8E' | |
[0.4660 0.6740 0.1880] | '#77AC30' | |
[0.3010 0.7450 0.9330] | '#4DBEEE' | |
[0.6350 0.0780 0.1840] | '#A2142F' |
'LineWidth'
— Line width0.5
(default) | positive valueLine width, specified as a positive value in points, where 1 point = 1/72 of an inch. If the line has markers, then the line width also affects the marker edges.
The line width cannot be thinner than the width of a pixel. If you set the line width to a value that is less than the width of a pixel on your system, the line displays as one pixel wide.
'MarkerSize'
— Marker size6
(default) | positive valueMarker size, specified as a positive value in points, where 1 point = 1/72 of an inch.
'MarkerEdgeColor'
— Marker outline color'auto'
(default) | RGB triplet | hexadecimal color code | 'r'
| 'g'
| 'b'
| ...Marker outline color, specified as 'auto'
, an RGB triplet, a
hexadecimal color code, a color name, or a short name. The default value of
'auto'
uses the same color as the Color
property.
For a custom color, specify an RGB triplet or a hexadecimal color code.
An RGB triplet is a three-element row vector whose elements
specify the intensities of the red, green, and blue
components of the color. The intensities must be in the
range [0,1]
; for example, [0.4
0.6 0.7]
.
A hexadecimal color code is a character vector or a string
scalar that starts with a hash symbol (#
)
followed by three or six hexadecimal digits, which can range
from 0
to F
. The
values are not case sensitive. Thus, the color codes
'#FF8800'
,
'#ff8800'
,
'#F80'
, and
'#f80'
are equivalent.
Alternatively, you can specify some common colors by name. This table lists the named color options, the equivalent RGB triplets, and hexadecimal color codes.
Color Name | Short Name | RGB Triplet | Hexadecimal Color Code | Appearance |
---|---|---|---|---|
'red' | 'r' | [1 0 0] | '#FF0000' | |
'green' | 'g' | [0 1 0] | '#00FF00' | |
'blue' | 'b' | [0 0 1] | '#0000FF' | |
'cyan'
| 'c' | [0 1 1] | '#00FFFF' | |
'magenta' | 'm' | [1 0 1] | '#FF00FF' | |
'yellow' | 'y' | [1 1 0] | '#FFFF00' | |
'black' | 'k' | [0 0 0] | '#000000' | |
'white' | 'w' | [1 1 1] | '#FFFFFF' | |
'none' | Not applicable | Not applicable | Not applicable | No color |
Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in many types of plots.
RGB Triplet | Hexadecimal Color Code | Appearance |
---|---|---|
[0 0.4470 0.7410] | '#0072BD' | |
[0.8500 0.3250 0.0980] | '#D95319' | |
[0.9290 0.6940 0.1250] | '#EDB120' | |
[0.4940 0.1840 0.5560] | '#7E2F8E' | |
[0.4660 0.6740 0.1880] | '#77AC30' | |
[0.3010 0.7450 0.9330] | '#4DBEEE' | |
[0.6350 0.0780 0.1840] | '#A2142F' |
'MarkerFaceColor'
— Marker fill color'none'
(default) | 'auto'
| RGB triplet | hexadecimal color code | 'r'
| 'g'
| 'b'
| ...Marker fill color, specified as 'auto'
, an RGB triplet, a hexadecimal
color code, a color name, or a short name. The 'auto'
option uses the
same color as the Color
property of the parent axes. If
you specify 'auto'
and the axes plot box is invisible, the marker fill
color is the color of the figure.
For a custom color, specify an RGB triplet or a hexadecimal color code.
An RGB triplet is a three-element row vector whose elements
specify the intensities of the red, green, and blue
components of the color. The intensities must be in the
range [0,1]
; for example, [0.4
0.6 0.7]
.
A hexadecimal color code is a character vector or a string
scalar that starts with a hash symbol (#
)
followed by three or six hexadecimal digits, which can range
from 0
to F
. The
values are not case sensitive. Thus, the color codes
'#FF8800'
,
'#ff8800'
,
'#F80'
, and
'#f80'
are equivalent.
Alternatively, you can specify some common colors by name. This table lists the named color options, the equivalent RGB triplets, and hexadecimal color codes.
Color Name | Short Name | RGB Triplet | Hexadecimal Color Code | Appearance |
---|---|---|---|---|
'red' | 'r' | [1 0 0] | '#FF0000' | |
'green' | 'g' | [0 1 0] | '#00FF00' | |
'blue' | 'b' | [0 0 1] | '#0000FF' | |
'cyan'
| 'c' | [0 1 1] | '#00FFFF' | |
'magenta' | 'm' | [1 0 1] | '#FF00FF' | |
'yellow' | 'y' | [1 1 0] | '#FFFF00' | |
'black' | 'k' | [0 0 0] | '#000000' | |
'white' | 'w' | [1 1 1] | '#FFFFFF' | |
'none' | Not applicable | Not applicable | Not applicable | No color |
Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in many types of plots.
RGB Triplet | Hexadecimal Color Code | Appearance |
---|---|---|
[0 0.4470 0.7410] | '#0072BD' | |
[0.8500 0.3250 0.0980] | '#D95319' | |
[0.9290 0.6940 0.1250] | '#EDB120' | |
[0.4940 0.1840 0.5560] | '#7E2F8E' | |
[0.4660 0.6740 0.1880] | '#77AC30' | |
[0.3010 0.7450 0.9330] | '#4DBEEE' | |
[0.6350 0.0780 0.1840] | '#A2142F' |
Use NaN
or Inf
to create breaks in the lines.
For example, this code plots a line with a break between z=2
and
z=4
.
plot3([1 2 3 4 5],[1 2 3 4 5],[1 2 NaN 4 5])
plot3
uses colors and line styles based on the ColorOrder
and LineStyleOrder
properties of
the axes. plot3
cycles through the colors with the first line style.
Then, it cycles through the colors again with each additional line style.
Starting in R2019b, you can change the colors and the line styles after plotting by
setting the ColorOrder
or LineStyleOrder
properties on the axes. You can also call the colororder
function to change the color order for all the axes in the figure.
Usage notes and limitations:
This function accepts GPU arrays, but does not run on a GPU.
For more information, see Run MATLAB Functions on a GPU (Parallel Computing Toolbox).
Usage notes and limitations:
This function operates on distributed arrays, but executes in the client MATLAB.
For more information, see Run MATLAB Functions with Distributed Arrays (Parallel Computing Toolbox).
You have a modified version of this example. Do you want to open this example with your edits?