Feature input layer
A feature input layer inputs feature data into a network and applies data normalization. Use this layer when you have a data set of numeric scalars representing features (data without spatial or time dimensions).
For image input, use imageInputLayer
.
returns a feature input layer and sets the layer
= featureInputLayer(numFeatures
)InputSize
property to the specified number of features.
sets the optional properties using name-value pairs. You can specify multiple name-value
pairs. Enclose each property name in single quotes.layer
= featureInputLayer(numFeatures
,Name,Value
)
InputSize
— Number of featuresNumber of features for each observation in the data, specified as a positive integer.
For image input, use imageInputLayer
.
Example:
10
Normalization
— Data normalization'none'
(default) | 'zscore'
| 'rescale-symmetric'
| 'rescale-zero-one'
| 'none'
| function handleData normalization to apply every time data is forward propagated through the input layer, specified as one of the following:
'zerocenter'
— Subtract the mean specified by Mean
.
'zscore'
— Subtract the mean specified by Mean
and divide by StandardDeviation
.
'rescale-symmetric'
— Rescale the input to be in the range [-1, 1] using the minimum and maximum values specified by Min
and Max
, respectively.
'rescale-zero-one'
— Rescale the input to be in the range [0, 1] using the minimum and maximum values specified by Min
and Max
, respectively.
'none'
— Do not normalize the input data.
function handle — Normalize the data using the specified function. The function must be of the form Y = func(X)
, where X
is the input data, and the output Y
is the normalized data.
Tip
The software, by default, automatically calculates the normalization statistics at training time. To save time when training, specify the required statistics for normalization and set the 'ResetInputNormalization'
option in trainingOptions
to false
.
NormalizationDimension
— Normalization dimension'auto'
(default) | 'channel'
| 'all'
Normalization dimension, specified as one of the following:
'auto'
– If the training option is false
and you specify any of the normalization statistics (Mean
, StandardDeviation
, Min
, or Max
), then normalize over the dimensions matching the statistics. Otherwise, recalculate the statistics at training time and apply channel-wise normalization.
'channel'
– Channel-wise normalization.
'all'
– Normalize all values using scalar
statistics.
Mean
— Mean for zero-center and z-score normalization[]
(default) | column vector | numeric scalarMean for zero-center and z-score normalization, specified as a
numFeatures
-by-1 vector of means per feature, a numeric scalar,
or []
.
If you specify the Mean
property, then
Normalization
must be 'zerocenter'
or
'zscore'
. If Mean
is
[]
, then the software calculates the mean at training
time.
You can set this property when creating networks without
training (for example, when assembling networks using assembleNetwork
).
Data Types: single
| double
| int8
| int16
| int32
| int64
| uint8
| uint16
| uint32
| uint64
StandardDeviation
— Standard deviation for z-score normalization[]
(default) | column vector | numeric scalarStandard deviation for z-score normalization, specified as a
numFeatures
-by-1 vector of means per feature, a numeric scalar,
or []
.
If you specify the StandardDeviation
property,
then Normalization
must be 'zscore'
. If StandardDeviation
is []
, then the
software calculates the standard deviation at training time.
You can set this property when creating networks without
training (for example, when assembling networks using assembleNetwork
).
Data Types: single
| double
| int8
| int16
| int32
| int64
| uint8
| uint16
| uint32
| uint64
Min
— Minimum value for rescaling[]
(default) | column vector | numeric scalarMinimum value for rescaling, specified as a numFeatures
-by-1
vector of minima per feature, a numeric scalar, or []
.
If you specify the Min
property, then Normalization
must be 'rescale-symmetric'
or
'rescale-zero-one'
. If Min
is
[]
, then the software calculates the minimum at training
time.
You can set this property when creating networks without
training (for example, when assembling networks using assembleNetwork
).
Data Types: single
| double
| int8
| int16
| int32
| int64
| uint8
| uint16
| uint32
| uint64
Max
— Maximum value for rescaling[]
(default) | column vector | numeric scalarMaximum value for rescaling, specified as a numFeatures
-by-1
vector of maxima per feature, a numeric scalar, or []
.
If you specify the Max
property, then Normalization
must be 'rescale-symmetric'
or
'rescale-zero-one'
. If Max
is
[]
, then the software calculates the maximum at training
time.
You can set this property when creating networks without
training (for example, when assembling networks using assembleNetwork
).
Data Types: single
| double
| int8
| int16
| int32
| int64
| uint8
| uint16
| uint32
| uint64
Name
— Layer name''
(default) | character vector | string scalar
Layer name, specified as a character vector or a string scalar.
To include a layer in a layer graph, you must specify a nonempty unique layer name. If you train
a series network with the layer and Name
is set to ''
,
then the software automatically assigns a name to the layer at training time.
Data Types: char
| string
NumInputs
— Number of inputsNumber of inputs of the layer. The layer has no inputs.
Data Types: double
InputNames
— Input names{}
(default)Input names of the layer. The layer has no inputs.
Data Types: cell
NumOutputs
— Number of outputsNumber of outputs of the layer. This layer has a single output only.
Data Types: double
OutputNames
— Output names{'out'}
(default)Output names of the layer. This layer has a single output only.
Data Types: cell
Create a feature input layer with name 'input'
for observations consisting of 21 features.
layer = featureInputLayer(21,'Name','input')
layer = FeatureInputLayer with properties: Name: 'input' InputSize: 21 Hyperparameters Normalization: 'none' NormalizationDimension: 'auto'
Include a feature input layer in a Layer
array.
numFeatures = 21; numClasses = 3; layers = [ featureInputLayer(numFeatures,'Name','input') fullyConnectedLayer(numClasses, 'Name','fc') softmaxLayer('Name','sm') classificationLayer('Name','classification')]
layers = 4x1 Layer array with layers: 1 'input' Feature Input 21 features 2 'fc' Fully Connected 3 fully connected layer 3 'sm' Softmax softmax 4 'classification' Classification Output crossentropyex
To train a network containing both an image input layer and a feature input layer, you must use a dlnetwork
object in a custom training loop.
Define the size of the input image, the number of features of each observation, the number of classes, and the size and number of filters of the convolution layer.
imageInputSize = [28 28 1]; numFeatures = 1; numClasses = 10; filterSize = 5; numFilters = 16;
To create a network with two input layers, you must define the network in two parts and join them, for example, by using a concatenation layer.
Define the first part of the network. Define the image classification layers and include a concatenation layer before the last fully connected layer.
layers = [ imageInputLayer(imageInputSize,'Normalization','none','Name','images') convolution2dLayer(filterSize,numFilters,'Name','conv') reluLayer('Name','relu') fullyConnectedLayer(50,'Name','fc1') concatenationLayer(1,2,'Name','concat') fullyConnectedLayer(numClasses,'Name','fc2') softmaxLayer('Name','softmax')];
Convert the layers to a layer graph.
lgraph = layerGraph(layers);
For the second part of the network, add a feature input layer and connect it to the second input of the concatenation layer.
featInput = featureInputLayer(numFeatures,'Name','features'); lgraph = addLayers(lgraph, featInput); lgraph = connectLayers(lgraph, 'features', 'concat/in2');
Visualize the network.
plot(lgraph)
Create a dlnetwork
object.
dlnet = dlnetwork(lgraph)
dlnet = dlnetwork with properties: Layers: [8x1 nnet.cnn.layer.Layer] Connections: [7x2 table] Learnables: [6x3 table] State: [0x3 table] InputNames: {'images' 'features'} OutputNames: {'softmax'}
Deep Network Designer | dlnetwork
| fullyConnectedLayer
| image3dInputLayer
| imageInputLayer
| sequenceInputLayer
| trainNetwork
You have a modified version of this example. Do you want to open this example with your edits?