This example shows how to create a custom processor configuration and estimate the performance of a pretrained series network. You can then modify parameters of the custom processor configuration and re-estimate the performance. Once you have achieved your performance requirements you can generate a custom bitstream by using the custom processor configuration.
To load the pretrained series network LogoNet, enter:
snet = getLogoNetwork;
To create a custom processor configuration, use the dlhdl.ProcessorConfig
object. For more information, see dlhdl.ProcessorConfig
. To learn about modifiable parameters of the processor configuration, see getModuleProperty
and setModuleProperty
.
hPC = dlhdl.ProcessorConfig; hPC.TargetFrequency = 220;
Create a dlhdl.Workflow
object. Specify snet
as the network and hPC
as the ProcessorConfig
.
hW = dlhdl.Workflow('Network',snet,'ProcessorConfig',hPC)
To estimate
the performance of the LogoNet series network, use the estimate
function of the dlhdl.Workflow
object. The function returns the estimated layer latency, network latency, and network performance in frames per second (Frames/s).
hW.estimate('Performance')
The output of the estimate
function is:
The estimated frames per second is 5.6 Frames/s. To improve the network performance, modify the custom processor convolution module kernel data type, convolution processor thread number, fully connected module kernel data type, and fully connected module thread number. For more information about these processor parameters, see getModuleProperty
and setModuleProperty
.
To create a custom processor configuration, use the dlhdl.ProcessorConfig
object. For more information, see dlhdl.ProcessorConfig
. To learn about modifiable parameters of the processor configuration, see getModuleProperty
and setModuleProperty
.
hPCNew = dlhdl.ProcessorConfig; hPC.TargetFrequency = 300; hPCNew.setModuleProperty('conv', 'KernelDataType', 'int8'); hPCNew.setModuleProperty('conv', 'ConvThreadNumber', 64); hPCNew.setModuleProperty('fc', 'KernelDataType', 'int8'); hPCNew.setModuleProperty('fc', 'FCThreadNumber', 16);
To estimate the performance of the LogoNet series network by using the new custom processor configuration, quantize the LogoNet network. For more information, see Estimate Performance of Quantized LogoNet Running On ZCU102 Bitstream. Use the quantized network object dlquantObj
to estimate performance by using the new custom processor configuration.
Create a dlhdl.Workflow
object. Specify dlQuantObj
as the network and hPC
as the ProcessorConfig
.
hW = dlhdl.Workflow('Network',dlquantObj,'ProcessorConfig',hPCNew)
To estimate the performance of the LogoNet series network, use the estimate
function of the dlhdl.Workflow
object. The function returns the estimated layer latency, network latency, and network performance in frames per second (Frames/s).
hW.estimate('Performance')
The output of the estimate
function is:
The estimated frames per second is 21.5 Frames/s.
Use the new custom processor configuration to build and generate a custom processor and bitstream. Use the custom bitstream to deploy the LogoNet network to your target FPGA board.
hdlsetuptoolpath('ToolName', 'Xilinx Vivado', 'ToolPath', 'C:\Xilinx\Vivado\2019.2\bin\vivado.bat'); dlhdl.buildProcessor(hPCNew);
To learn how to use the generated bitstream file, see Generate Custom Bitstream.
The generated bitstream in this example is similar to the zcu102_int8
bitstream. To deploy the quantized LogoNet network using the zcu102_int8
bitstream, see Obtain Prediction Results for Quantized LogoNet Network.