Model S-parameter network
RF Blockset / Circuit Envelope / Elements
The S-parameters block models a network defined by S-parameters in the RF Blockset™ circuit envelope simulation environment. The device can have up to 32 ports. For an introduction to RF simulation, see the example, Simulate High Frequency Components.
The block models S-parameter data in the RF Blockset environment by fitting a rational function to the specified data. For more
information about rational fitting of S-parameters, see the RF Toolbox™
rationalfit
function.
Note
If you specify more than eight ports, the block does not simulate noise.
Data source
— Data sourceData file
(default) | Network-parameters
| Rational model
Data source for S-parameters behavior, specified as one of the following:
Data file
— Name
of a Touchstone file with the extension.s2p
. The
block ignores noise and nonlinearity data in imported files.
Network-parameters
—
Provide Network parameter data such as S-parameters
, Y-parameters
,
and Z-parameters
with corresponding Frequency and Reference
impedance (ohms) for the s-parameters.
Rational model
—
Provide values for Residues, Poles,
and Direct feedthrough parameters which correspond
to the equation for a rational model
.In this rational model
equation, each Ck is the
residue of the pole Ak.
If Ck is complex, a corresponding
complex conjugate pole and residue must also be enumerated. This object
has the properties C
, A
, and D
.
You can use these properties to specify the Residues, Poles,
and Direct feedthrough parameters.
Data file
— Name of network parameter data filesimrfV2_unitygain.s2p
(default) | character vectorName of network parameter data file, specified as a character vector.
To enable this parameter, select Data file
in Data
source tab.
Network parameter type
— Network parameter typeS-parameters
(default) | Y-parameters
| Z-parameters
Network parameter type, specified as S-parameters
, Y-parameters
,
or Z-parameters
.
To enable this parameter, select Network-parameters
in Data
source tab.
Network-parameters
— Network parameter values[0 0;1 0]
(default) | multidimensional arrayNetwork parameter values specified as a multidimensional array. The third dimension of the S-parameter array must be the same length as the vector of frequencies specified by the Frequency parameter. The default values are different for S-parameters, Y-parameters, and Z-parameters respectively.
To enable this parameter, select Network-parameters
in Data
source tab.
Frequency (dB)
— Frequency of network parameters1e9 Hz
(default) | scalar | vector | Hz
| kHz
| MHz
| GHz
Frequency of network parameters, specified as a scalar or a vector in Hz.
To enable this parameter, select Network-parameters
in
Data source.
Reference Impedance(Ohm)
— Reference impedance of network parameters50
(default) | scalar Reference impedance of network parameters, specified as a scalar.
To enable this parameter, select Network-parameters
in Data
source tab.
Residues
— Residues in order of rational model0
(default) | vectorResidues in order of rational model, specified as a vector.
To enable this parameter, select Rational model
in Data
source tab.
Poles
— Residues in order of rational model0
(default) | vectorPoles in order of rational model, specified as a vector.
To enable this parameter, select Rational model
in Data
source tab.
Direct feedthrough
— Direct feedthrough {0 0:1 0}
(default) | array of vectorsDirect feedthrough, specified as an array vector.
To enable this parameter, select Rational model
in Data
source tab. .
Simulate noise
— Generate thermal noise wavesoff
(default) | on
Choose this parameter to generate thermal noise waves [1]. Clear this parameter to stop simulating noise. For more information see, Generate Thermal Noise.
Note
This parameter is disabled when you specify more than eight ports.
Ground and hide negative terminals
— Ground RF circuit terminalson
(default) | off
Select this parameter to ground and hide the negative terminals. Clear this parameter to expose the negative terminals. By exposing these terminals, you can connect them to other parts of your model.
By default, this option is selected.
Modeling options
— Model S-parametersTime-domain (rationalfit)
(default) | Frequency-domain
Model S-parameters, specified as:
Time-domain (rationalfit) technique creates an analytical
rational model that approximates the whole range of the data. When
modeling using Time domain
, the Plot in Visualization
tab
plots the data defined in Data Source
and the values
in the rationalfit
function.
Frequency-domain computes the baseband impulse response for each carrier frequency independently. This technique is based on convolution. There is an option to specify the duration of the impulse response. For more information, see Compare Time and Frequency Domain Simulation Options for S-parameters.
For the Amplifier and S-parameters blocks,
the default value is Time domain (rationalfit)
.
For the Transmission Line block, the default value
is Frequency domain
.
To set this parameter, first select Data file
or Network-parameters
in Data
source. This selection activates the Visualization Tab
which contains Source of frequency data
Fitting options
— Rationalfit fitting optionsFit individually
(default) | Share poles by column
| Share all poles
Rationalfit fitting options, specified as Fit individually
, Share
poles by column
, or Share all poles
.
Rational fitting results shows values of Number of independent fits, Number of required poles, and Relative error achieved (dB).
To set this parameter, select Time domain (rationalfit)
in Modeling
options.
Relative error desired (dB)
— Relative error acceptable for the rational fit-40
(default) | scalarRelative error acceptable for the rational fit, specified as a scalar.
To set this parameter, select Time domain (rationalfit)
in Modeling
options.
Automatically estimate impulse response duration
— Automatically calculate impulse responseon
| off
Select this parameter to automatically calculate impulse response. Clear this parameter to manually specify the impulse response duration using Impulse response duration.
To set this parameter, select Frequency domain
in Modeling
options.
Impulse response duration
— Impulse response duration1e-10
(default) | scalarImpulse response duration, specified as a scalar.
To set this parameter, first select Frequency domain
in Modeling
options. Then, clear Automatically estimate impulse
response duration
.
Use only S-parameter magnitude with appropriate delay
— Use only S-parameter magnitude with appropriate delayoff
(default) | on
Select this parameter to ignore the s-parameter phase and delay the impulse response by half its length. This parameter is applicable only for S-parameter data modeled in time domain. You can use this to shape spectral content with filter effects by specifying only magnitude.
Note
This parameter introduces an artificial delay to the system.
Source of frequency data
— Frequency data sourceExtracted from data source
(default) | User-defined
Frequency data source, specified as:
When Source of frequency data is Extracted
from data source
, the Data source must
be set to Data file
. Verify that the specified Data
file contains frequency data.
When Source of frequency data is User-specified
,
specify a vector of frequencies in the Frequency data parameter.
Also, specify units from the corresponding drop-down list.
Frequency data
— Frequency data range[1e9:1e6:3e9]
(default) | vector | Hz
| kHz
| MHz
| GHz
Frequency data range, specified as a vector
Plot type
— Type of data plotX-Y plane
(default) | Polar plane
| Z Smith chart
| Y Smith chart
| ZY Smith chart
Type of data plot that you want to produce with your data specified as one of the following:
X-Y plane
— Generate
a Cartesian plot of your data versus frequency. To create linear,
semilog, or log-log plots, set the Y-axis scale and X-axis
scale accordingly.
Polar plane
— Generate
a polar plot of your data. The block plots only the range of data
corresponding to the specified frequencies.
Z smith chart
, Y
smith chart
, and ZY smith chart
—
Generate a Smith® chart.
The block plots only the range of data corresponding to the specified
frequencies.
Parameter 1
— Type of S-Parameters to plotS11
(default) | SNN
Type of S-Parameters to plot, specified as SNN
, where N
is the number of ports in the s-parameters block.
Parameter 2
— Type of S-Parameters to plotNone
(default) | SNN
Type of S-Parameters to plot, specified as SNN
, where
N is the number of ports in the s-parameters
block.
Format1
— Plot formatMagnitude (decibels)
(default) | Angle(degrees)
| Real
| Imaginary
Plot format, specified as Magnitude (decibels)
, Angle(degrees)
, Real
,
or Imaginary
.
Format2
— Plot formatMagnitude (decibels)
(default) | Angle(degrees)
| Real
| Imaginary
Plot format, specified as Magnitude (decibels)
, Angle(degrees)
, Real
,
or Imaginary
.
Y-axis scale
— Y-axis scaleLinear
(default) | Logarithmic
Y-axis scale, specified as Linear
or Logarithmic
.
X-axis scale
— X-axis scaleLinear
(default) | Logarithmic
X-axis scale, specified as Linear
or Logarithmic
.
Plot
— Plot specified dataPlot specified data using plot button.
You can only generate thermal noise if the given S-parameters multiport components are passive.
To include the noise waves, the block augments the S-parameters equation:
a and b — Customary wave vectors
c — Noise wave vector
The noise wave vector, noise correlation matrix, and S-parameters have these relationships:
where:
K
— Boltzmann's constant
T
— System temperature
c
— Noise wave vector
[1] Wedge, Scott & Rutledge, David. " Wave Techniques for Noise Modeling and Measurement" IEEE Transactions on Microwave Theory and Techniques. Vol. 40, Number 11, pp. 2004–2012, Nov. 1992.