weka.classifiers.trees
Class UserClassifier

java.lang.Object
  extended by weka.classifiers.Classifier
      extended by weka.classifiers.trees.UserClassifier
All Implemented Interfaces:
java.io.Serializable, java.lang.Cloneable, CapabilitiesHandler, Drawable, OptionHandler, RevisionHandler, TechnicalInformationHandler, TreeDisplayListener, VisualizePanelListener

public class UserClassifier
extends Classifier
implements Drawable, TreeDisplayListener, VisualizePanelListener, TechnicalInformationHandler

Interactively classify through visual means. You are Presented with a scatter graph of the data against two user selectable attributes, as well as a view of the decision tree. You can create binary splits by creating polygons around data plotted on the scatter graph, as well as by allowing another classifier to take over at points in the decision tree should you see fit.

For more information see:

Malcolm Ware, Eibe Frank, Geoffrey Holmes, Mark Hall, Ian H. Witten (2001). Interactive machine learning: letting users build classifiers. Int. J. Hum.-Comput. Stud.. 55(3):281-292.

BibTeX:

 @article{Ware2001,
    author = {Malcolm Ware and Eibe Frank and Geoffrey Holmes and Mark Hall and Ian H. Witten},
    journal = {Int. J. Hum.-Comput. Stud.},
    number = {3},
    pages = {281-292},
    title = {Interactive machine learning: letting users build classifiers},
    volume = {55},
    year = {2001},
    PS = {http://www.cs.waikato.ac.nz/\~ml/publications/2000/00MW-etal-Interactive-ML.ps}
 }
 

Valid options are:

 -D
  If set, classifier is run in debug mode and
  may output additional info to the console

Version:
$Revision: 5535 $
Author:
Malcolm Ware (mfw4@cs.waikato.ac.nz)
See Also:
Serialized Form

Field Summary
 
Fields inherited from interface weka.core.Drawable
BayesNet, Newick, NOT_DRAWABLE, TREE
 
Constructor Summary
UserClassifier()
          Constructor
 
Method Summary
 void buildClassifier(Instances i)
          Call this function to build a decision tree for the training data provided.
 double[] distributionForInstance(Instance i)
          Call this function to get a double array filled with the probability of how likely each class type is the class of the instance.
 Capabilities getCapabilities()
          Returns default capabilities of the classifier.
 java.lang.String getRevision()
          Returns the revision string.
 TechnicalInformation getTechnicalInformation()
          Returns an instance of a TechnicalInformation object, containing detailed information about the technical background of this class, e.g., paper reference or book this class is based on.
 java.lang.String globalInfo()
          This will return a string describing the classifier.
 java.lang.String graph()
          Returns a string that describes a graph representing the object.
 int graphType()
          Returns the type of graph this classifier represents.
static void main(java.lang.String[] argv)
          Main method for testing this class.
 java.lang.String toString()
           
 void userCommand(TreeDisplayEvent e)
          Receives user choices from the tree view, and then deals with these choices.
 void userDataEvent(VisualizePanelEvent e)
          This receives shapes from the data view.
 
Methods inherited from class weka.classifiers.Classifier
classifyInstance, debugTipText, forName, getDebug, getOptions, listOptions, makeCopies, makeCopy, setDebug, setOptions
 
Methods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, wait, wait, wait
 

Constructor Detail

UserClassifier

public UserClassifier()
Constructor

Method Detail

main

public static void main(java.lang.String[] argv)
Main method for testing this class.

Parameters:
argv - should contain command line options (see setOptions)

toString

public java.lang.String toString()
Overrides:
toString in class java.lang.Object
Returns:
a string that represents this objects tree.

userCommand

public void userCommand(TreeDisplayEvent e)
Receives user choices from the tree view, and then deals with these choices.

Specified by:
userCommand in interface TreeDisplayListener
Parameters:
e - The choice.

userDataEvent

public void userDataEvent(VisualizePanelEvent e)
This receives shapes from the data view. It then enters these shapes into the decision tree structure.

Specified by:
userDataEvent in interface VisualizePanelListener
Parameters:
e - Contains the shapes, and other info.

graphType

public int graphType()
Returns the type of graph this classifier represents.

Specified by:
graphType in interface Drawable
Returns:
Drawable.TREE

graph

public java.lang.String graph()
                       throws java.lang.Exception
Description copied from interface: Drawable
Returns a string that describes a graph representing the object. The string should be in XMLBIF ver. 0.3 format if the graph is a BayesNet, otherwise it should be in dotty format.

Specified by:
graph in interface Drawable
Returns:
A string formatted with a dotty representation of the decision tree.
Throws:
java.lang.Exception - if String can't be built properly.

globalInfo

public java.lang.String globalInfo()
This will return a string describing the classifier.

Returns:
The string.

getTechnicalInformation

public TechnicalInformation getTechnicalInformation()
Returns an instance of a TechnicalInformation object, containing detailed information about the technical background of this class, e.g., paper reference or book this class is based on.

Specified by:
getTechnicalInformation in interface TechnicalInformationHandler
Returns:
the technical information about this class

getCapabilities

public Capabilities getCapabilities()
Returns default capabilities of the classifier.

Specified by:
getCapabilities in interface CapabilitiesHandler
Overrides:
getCapabilities in class Classifier
Returns:
the capabilities of this classifier
See Also:
Capabilities

buildClassifier

public void buildClassifier(Instances i)
                     throws java.lang.Exception
Call this function to build a decision tree for the training data provided.

Specified by:
buildClassifier in class Classifier
Parameters:
i - The training data.
Throws:
java.lang.Exception - if can't build classification properly.

distributionForInstance

public double[] distributionForInstance(Instance i)
                                 throws java.lang.Exception
Call this function to get a double array filled with the probability of how likely each class type is the class of the instance.

Overrides:
distributionForInstance in class Classifier
Parameters:
i - The instance to classify.
Returns:
A double array filled with the probalities of each class type.
Throws:
java.lang.Exception - if can't classify instance.

getRevision

public java.lang.String getRevision()
Returns the revision string.

Specified by:
getRevision in interface RevisionHandler
Overrides:
getRevision in class Classifier
Returns:
the revision