weka.classifiers.functions.supportVector
Class StringKernel

java.lang.Object
  extended by weka.classifiers.functions.supportVector.Kernel
      extended by weka.classifiers.functions.supportVector.StringKernel
All Implemented Interfaces:
java.io.Serializable, CapabilitiesHandler, OptionHandler, RevisionHandler, TechnicalInformationHandler

public class StringKernel
extends Kernel
implements TechnicalInformationHandler

Implementation of the subsequence kernel (SSK) as described in [1] and of the subsequence kernel with lambda pruning (SSK-LP) as described in [2].

For more information, see

Huma Lodhi, Craig Saunders, John Shawe-Taylor, Nello Cristianini, Christopher J. C. H. Watkins (2002). Text Classification using String Kernels. Journal of Machine Learning Research. 2:419-444.

F. Kleedorfer, A. Seewald (2005). Implementation of a String Kernel for WEKA. Wien, Austria.

BibTeX:

 @article{Lodhi2002,
    author = {Huma Lodhi and Craig Saunders and John Shawe-Taylor and Nello Cristianini and Christopher J. C. H. Watkins},
    journal = {Journal of Machine Learning Research},
    pages = {419-444},
    title = {Text Classification using String Kernels},
    volume = {2},
    year = {2002},
    HTTP = {http://www.jmlr.org/papers/v2/lodhi02a.html}
 }
 
 @techreport{Kleedorfer2005,
    address = {Wien, Austria},
    author = {F. Kleedorfer and A. Seewald},
    institution = {Oesterreichisches Forschungsinstitut fuer Artificial Intelligence},
    number = {TR-2005-13},
    title = {Implementation of a String Kernel for WEKA},
    year = {2005}
 }
 

Valid options are:

 -D
  Enables debugging output (if available) to be printed.
  (default: off)
 -no-checks
  Turns off all checks - use with caution!
  (default: checks on)
 -P <0|1>
  The pruning method to use:
  0 = No pruning
  1 = Lambda pruning
  (default: 0)
 -C <num>
  The size of the cache (a prime number).
  (default: 250007)
 -IC <num>
  The size of the internal cache (a prime number).
  (default: 200003)
 -L <num>
  The lambda constant. Penalizes non-continuous subsequence
  matches. Must be in (0,1).
  (default: 0.5)
 -ssl <num>
  The length of the subsequence.
  (default: 3)
 -ssl-max <num>
  The maximum length of the subsequence.
  (default: 9)
 -N
  Use normalization.
  (default: no)

Theory

Overview

The algorithm computes a measure of similarity between two texts based on the number and form of their common subsequences, which need not be contiguous. This method can be parametrized by specifying the subsequence length k, the penalty factor lambda, which penalizes non-contiguous matches, and optional 'lambda pruning', which takes maxLambdaExponent, m, as parameter. Lambda pruning causes very 'stretched' substring matches not to be counted, thus speeding up the computation. The functionality of SSK and SSK-LP is explained in the following using simple examples.

Explanation & Examples

for all of the following examples, we assume these parameter values:
 
k=2
lambda=0.5
m=8 (for SSK-LP examples)

SSK

Example 1

SSK(2,"ab","axb")=0.5^5 = 0,03125
There is one subsequence of the length of 2 that both strings have in common, "ab". The result of SSK is computed by raising lambda to the power of L, where L is the length of the subsequence match in the one string plus the length of the subsequence match in the other, in our case:
   ab    axb
L= 2  +   3 = 5
 
hence, the kernel yields 0.5^5 = 0,03125

Example 2

SSK(2,"ab","abb")=0.5^5 + 0.5^4 = 0,09375
Here, we also have one subsequence of the length of 2 that both strings have in common, "ab". The result of SSK is actually computed by summing over all values computed for each occurrence of a common subsequence match. In this example, there are two possible cases:
ab    abb
--    --  L=4
--    - - L=5
 
we have two matches, one of the length of 2+2=4, one of the length of 2+3=5, so we get the result 0.5^5 + 0.5^4 = 0,09375.

SSK-LP

Without lambda pruning, the string kernel finds *all* common subsequences of the given length, whereas with lambda pruning, common subsequence matches that are too much stretched in both strings are not taken into account. It is argued that the value yielded for such a common subsequence is too low (lambda ^(length[match_in_s] + length[match_in_t]) . Tests have shown that a tremendous speedup can be achieved using this technique while suffering from very little quality loss.
Lambda pruning is parametrized by the maximum lambda exponent. It is a good idea to choose that value to be about 3 or 4 times the subsequence length as a rule of thumb. YMMV.

Example 3

Without lambda pruning, one common subsequence, "AB" would be found in the following two strings. (With k=2)
SSK(2,"ab","axb")=0.5^14 = 0,00006103515625
lambda pruning allows for the control of the match length. So, if m (the maximum lambda exponent) is e.g. 8, these two strings would yield a kernel value of 0:
with lambda pruning:    SSK-LP(2,8,"AxxxxxxxxxB","AyB")= 0
without lambda pruning: SSK(2,"AxxxxxxxxxB","AyB")= 0.5^14 = 0,00006103515625  
This is because the exponent for lambda (=the length of the subsequence match) would be 14, which is > 8. In Contrast, the next result is > 0
m=8
SSK-LP(2,8,"AxxB","AyyB")=0.5^8 = 0,00390625
because the lambda exponent would be 8, which is just accepted by lambda pruning.

Normalization

When the string kernel is used for its main purpose, as the kernel of a support vector machine, it is not normalized. The normalized kernel can be switched on by -F (feature space normalization) but is much slower. Like most unnormalized kernels, K(x,x) is not a fixed value, see the next example.

Example 4

SSK(2,"ab","ab")=0.5^4 = 0.0625
SSK(2,"AxxxxxxxxxB","AxxxxxxxxxB") = 12.761724710464478
SSK is evaluated twice, each time for two identical strings. A good measure of similarity would produce the same value in both cases, which should indicate the same level of similarity. The value of the normalized SSK would be 1.0 in both cases. So for the purpose of computing string similarity the normalized kernel should be used. For SVM the unnormalized kernel is usually sufficient.

Complexity of SSK and SSK-LP

The time complexity of this method (without lambda pruning and with an infinitely large cache) is
O(k*|s|*|t|)
Lambda Pruning has a complexity (without caching) of
O(m*binom(m,k)^2*(|s|+n)*|t|)

k...          subsequence length (ssl)
s,t...        strings
|s|...        length of string s
binom(x,y)... binomial coefficient (x!/[(x-y)!y!])
m...          maxLambdaExponent (ssl-max)
Keep in mind that execution time can increase fast for long strings and big values for k, especially if you don't use lambda pruning. With lambda pruning, computation is usually so fast that switching on the cache leads to slower computation because of setup costs. Therefore caching is switched off for lambda pruning.

For details and qualitative experiments about SSK, see [1]
For details about lambda pruning and performance comparison of SSK and SSK-LP (SSK with lambda pruning), see [2] Note that the complexity estimation in [2] assumes no caching of intermediate results, which has been implemented in the meantime and greatly improves the speed of the SSK without lambda pruning.

Notes for usage within Weka

Only instances of the following form can be processed using string kernels:
+----------+-------------+---------------+
|attribute#|     0       |       1       |
+----------+-------------+---------------+
| content  | [text data] | [class label] |
+----------------------------------------+
 ... or ...
+----------+---------------+-------------+
|attribute#|     0         |     1       |
+----------+---------------+-------------+
| content  | [class label] | [text data] |
+----------------------------------------+

Version:
$Revision: 5518 $
Author:
Florian Kleedorfer (kleedorfer@austria.fm), Alexander K. Seewald (alex@seewald.at)
See Also:
Serialized Form

Field Summary
static int PRUNING_LAMBDA
          Pruning method: Lambda See [2] for details.
static int PRUNING_NONE
          Pruning method: No Pruning
static Tag[] TAGS_PRUNING
          Pruning methods
 
Constructor Summary
StringKernel()
          default constructor
StringKernel(Instances data, int cacheSize, int subsequenceLength, double lambda, boolean debug)
          creates a new StringKernel object.
 
Method Summary
 void buildKernel(Instances data)
          builds the kernel with the given data.
 java.lang.String cacheSizeTipText()
          Returns the tip text for this property
 void clean()
          Frees the memory used by the kernel.
 double eval(int id1, int id2, Instance inst1)
          Computes the result of the kernel function for two instances.
 int getCacheSize()
          Gets the size of the cache
 Capabilities getCapabilities()
          Returns the Capabilities of this kernel.
 int getInternalCacheSize()
          Gets the size of the internal cache
 double getLambda()
          Gets the lambda constant used in the string kernel
 int getMaxSubsequenceLength()
          Returns the maximum length of the subsequence
 java.lang.String[] getOptions()
          Gets the current settings of the Kernel.
 SelectedTag getPruningMethod()
          Gets the method used for pruning.
 java.lang.String getRevision()
          Returns the revision string.
 int getSubsequenceLength()
          Returns the length of the subsequence
 TechnicalInformation getTechnicalInformation()
          Returns an instance of a TechnicalInformation object, containing detailed information about the technical background of this class, e.g., paper reference or book this class is based on.
 boolean getUseNormalization()
          Returns whether normalization is used.
 java.lang.String globalInfo()
          Returns a string describing the kernel
 java.lang.String internalCacheSizeTipText()
          Returns the tip text for this property
 java.lang.String lambdaTipText()
          Returns the tip text for this property
 java.util.Enumeration listOptions()
          Returns an enumeration describing the available options.
 java.lang.String maxSubsequenceLengthTipText()
          Returns the tip text for this property
 double normalizedKernel(char[] s, char[] t)
          evaluates the normalized kernel between s and t.
 int numCacheHits()
          Returns the number of dot product cache hits.
 int numEvals()
          Returns the number of kernel evaluation performed.
 java.lang.String pruningMethodTipText()
          Returns the tip text for this property
 void setCacheSize(int value)
          Sets the size of the cache to use (a prime number)
 void setInternalCacheSize(int value)
          sets the size of the internal cache for intermediate results.
 void setLambda(double value)
          Sets the lambda constant used in the string kernel
 void setMaxSubsequenceLength(int value)
          Sets the maximum length of the subsequence.
 void setOptions(java.lang.String[] options)
          Parses a given list of options.
 void setPruningMethod(SelectedTag value)
          Sets the method used to for pruning.
 void setSubsequenceLength(int value)
          Sets the length of the subsequence.
 void setUseNormalization(boolean value)
          Sets whether to use normalization.
 java.lang.String subsequenceLengthTipText()
          Returns the tip text for this property
 double unnormalizedKernel(char[] s, char[] t)
          evaluates the unnormalized kernel between s and t.
 java.lang.String useNormalizationTipText()
          Returns the tip text for this property
 
Methods inherited from class weka.classifiers.functions.supportVector.Kernel
checksTurnedOffTipText, debugTipText, forName, getChecksTurnedOff, getDebug, makeCopies, makeCopy, setChecksTurnedOff, setDebug
 
Methods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
 

Field Detail

PRUNING_NONE

public static final int PRUNING_NONE
Pruning method: No Pruning

See Also:
Constant Field Values

PRUNING_LAMBDA

public static final int PRUNING_LAMBDA
Pruning method: Lambda See [2] for details.

See Also:
Constant Field Values

TAGS_PRUNING

public static final Tag[] TAGS_PRUNING
Pruning methods

Constructor Detail

StringKernel

public StringKernel()
default constructor


StringKernel

public StringKernel(Instances data,
                    int cacheSize,
                    int subsequenceLength,
                    double lambda,
                    boolean debug)
             throws java.lang.Exception
creates a new StringKernel object. Initializes the kernel cache and the 'lambda cache', i.e. the precalculated powers of lambda from lambda^2 to lambda^MAX_POWER_OF_LAMBDA

Parameters:
data - the dataset to use
cacheSize - the size of the cache
subsequenceLength - the subsequence length
lambda - the lambda value
debug - whether to output debug information
Throws:
java.lang.Exception - if something goes wrong
Method Detail

globalInfo

public java.lang.String globalInfo()
Returns a string describing the kernel

Specified by:
globalInfo in class Kernel
Returns:
a description suitable for displaying in the explorer/experimenter gui

getTechnicalInformation

public TechnicalInformation getTechnicalInformation()
Returns an instance of a TechnicalInformation object, containing detailed information about the technical background of this class, e.g., paper reference or book this class is based on.

Specified by:
getTechnicalInformation in interface TechnicalInformationHandler
Returns:
the technical information about this class

listOptions

public java.util.Enumeration listOptions()
Returns an enumeration describing the available options.

Specified by:
listOptions in interface OptionHandler
Overrides:
listOptions in class Kernel
Returns:
an enumeration of all the available options.

setOptions

public void setOptions(java.lang.String[] options)
                throws java.lang.Exception
Parses a given list of options.

Valid options are:

 -D
  Enables debugging output (if available) to be printed.
  (default: off)
 -no-checks
  Turns off all checks - use with caution!
  (default: checks on)
 -P <0|1>
  The pruning method to use:
  0 = No pruning
  1 = Lambda pruning
  (default: 0)
 -C <num>
  The size of the cache (a prime number).
  (default: 250007)
 -IC <num>
  The size of the internal cache (a prime number).
  (default: 200003)
 -L <num>
  The lambda constant. Penalizes non-continuous subsequence
  matches. Must be in (0,1).
  (default: 0.5)
 -ssl <num>
  The length of the subsequence.
  (default: 3)
 -ssl-max <num>
  The maximum length of the subsequence.
  (default: 9)
 -N
  Use normalization.
  (default: no)

Specified by:
setOptions in interface OptionHandler
Overrides:
setOptions in class Kernel
Parameters:
options - the list of options as an array of strings
Throws:
java.lang.Exception - if an option is not supported

getOptions

public java.lang.String[] getOptions()
Gets the current settings of the Kernel.

Specified by:
getOptions in interface OptionHandler
Overrides:
getOptions in class Kernel
Returns:
an array of strings suitable for passing to setOptions

pruningMethodTipText

public java.lang.String pruningMethodTipText()
Returns the tip text for this property

Returns:
tip text for this property suitable for displaying in the explorer/experimenter gui

setPruningMethod

public void setPruningMethod(SelectedTag value)
Sets the method used to for pruning.

Parameters:
value - the pruning method to use.

getPruningMethod

public SelectedTag getPruningMethod()
Gets the method used for pruning.

Returns:
the pruning method to use.

setCacheSize

public void setCacheSize(int value)
Sets the size of the cache to use (a prime number)

Parameters:
value - the size of the cache

getCacheSize

public int getCacheSize()
Gets the size of the cache

Returns:
the cache size

cacheSizeTipText

public java.lang.String cacheSizeTipText()
Returns the tip text for this property

Returns:
tip text for this property suitable for displaying in the explorer/experimenter gui

setInternalCacheSize

public void setInternalCacheSize(int value)
sets the size of the internal cache for intermediate results. Memory consumption is about 16x this amount in bytes. Only use when lambda pruning is switched off.

Parameters:
value - the size of the internal cache

getInternalCacheSize

public int getInternalCacheSize()
Gets the size of the internal cache

Returns:
the cache size

internalCacheSizeTipText

public java.lang.String internalCacheSizeTipText()
Returns the tip text for this property

Returns:
tip text for this property suitable for displaying in the explorer/experimenter gui

setSubsequenceLength

public void setSubsequenceLength(int value)
Sets the length of the subsequence.

Parameters:
value - the length

getSubsequenceLength

public int getSubsequenceLength()
Returns the length of the subsequence

Returns:
the length

subsequenceLengthTipText

public java.lang.String subsequenceLengthTipText()
Returns the tip text for this property

Returns:
tip text for this property suitable for displaying in the explorer/experimenter gui

setMaxSubsequenceLength

public void setMaxSubsequenceLength(int value)
Sets the maximum length of the subsequence.

Parameters:
value - the maximum length

getMaxSubsequenceLength

public int getMaxSubsequenceLength()
Returns the maximum length of the subsequence

Returns:
the maximum length

maxSubsequenceLengthTipText

public java.lang.String maxSubsequenceLengthTipText()
Returns the tip text for this property

Returns:
tip text for this property suitable for displaying in the explorer/experimenter gui

setLambda

public void setLambda(double value)
Sets the lambda constant used in the string kernel

Parameters:
value - the lambda value to use

getLambda

public double getLambda()
Gets the lambda constant used in the string kernel

Returns:
the current lambda constant

lambdaTipText

public java.lang.String lambdaTipText()
Returns the tip text for this property

Returns:
tip text for this property suitable for displaying in the explorer/experimenter gui

setUseNormalization

public void setUseNormalization(boolean value)
Sets whether to use normalization. Each time this value is changed, the kernel cache is cleared.

Parameters:
value - whether to use normalization

getUseNormalization

public boolean getUseNormalization()
Returns whether normalization is used.

Returns:
true if normalization is used

useNormalizationTipText

public java.lang.String useNormalizationTipText()
Returns the tip text for this property

Returns:
tip text for this property suitable for displaying in the explorer/experimenter gui

eval

public double eval(int id1,
                   int id2,
                   Instance inst1)
            throws java.lang.Exception
Computes the result of the kernel function for two instances. If id1 == -1, eval use inst1 instead of an instance in the dataset.

Specified by:
eval in class Kernel
Parameters:
id1 - the index of the first instance in the dataset
id2 - the index of the second instance in the dataset
inst1 - the instance corresponding to id1 (used if id1 == -1)
Returns:
the result of the kernel function
Throws:
java.lang.Exception - if something goes wrong

clean

public void clean()
Frees the memory used by the kernel. (Useful with kernels which use cache.) This function is called when the training is done. i.e. after that, eval will be called with id1 == -1.

Specified by:
clean in class Kernel

numEvals

public int numEvals()
Returns the number of kernel evaluation performed.

Specified by:
numEvals in class Kernel
Returns:
the number of kernel evaluation performed.

numCacheHits

public int numCacheHits()
Returns the number of dot product cache hits.

Specified by:
numCacheHits in class Kernel
Returns:
the number of dot product cache hits, or -1 if not supported by this kernel.

normalizedKernel

public double normalizedKernel(char[] s,
                               char[] t)
evaluates the normalized kernel between s and t. See [1] for details about the normalized SSK.

Parameters:
s - first input string
t - second input string
Returns:
a double indicating their distance, or similarity

unnormalizedKernel

public double unnormalizedKernel(char[] s,
                                 char[] t)
evaluates the unnormalized kernel between s and t. See [1] for details about the unnormalized SSK.

Parameters:
s - first input string
t - second input string
Returns:
a double indicating their distance, or similarity

getCapabilities

public Capabilities getCapabilities()
Returns the Capabilities of this kernel.

Specified by:
getCapabilities in interface CapabilitiesHandler
Overrides:
getCapabilities in class Kernel
Returns:
the capabilities of this object
See Also:
Capabilities

buildKernel

public void buildKernel(Instances data)
                 throws java.lang.Exception
builds the kernel with the given data.

Overrides:
buildKernel in class Kernel
Parameters:
data - the data to base the kernel on
Throws:
java.lang.Exception - if something goes wrong, e.g., the data does not consist of one string attribute and the class

getRevision

public java.lang.String getRevision()
Returns the revision string.

Specified by:
getRevision in interface RevisionHandler
Overrides:
getRevision in class Kernel
Returns:
the revision