Node:bar_plot,
Next:interval_bar_plot,
Previous:area,
Up:Top
Bar Plots
Default: 0. Specifies the column from which base values (i.e., X values when attribute "direction" is "vertical", Y values otherwise) are extracted.
The
combination of "data", "bcol", and "hcol" attributes defines
the set of boxes drawn by this chart. See the
below example:
d = [[5,10], [7,22], [8,25]]
p = bar_plot.T(data = d, bcol = 1, hcol = 2)
Here, three bars will be drawn. The X values of the bars
will be 5, 7, and 8. The Y values of the bars will be
10, 22, and 25, respectively. (In practice, because
the values of bcol and hcol defaults to 1 and 2, you can
write the above example just as "p = bar_plot.T(data = d)".
|
cluster type: tuple
|
Attribute |
Default: (0, 1). This attribute is used to
cluster multiple bar plots side by side in a single chart.
The value should be a tuple of two integers. The second value should be equal to the total number of bar plots in the chart. The first value should be the relative position of this chart; 0 places this chart the leftmost, and N-1
(where N is the 2nd value of this attribute) places this chart the rightmost. Consider the below example:
a = area.T(...)
p1 = bar_plot.T(data = [[1,20][2,30]], cluster=(0,2))
p2 = bar_plot.T(data = [[1,25],[2,10]], cluster=(1,2))
a.add_plot(p1, p2)
a.draw()
In this example, one group of bars will be drawn side-by-side at
position x=1, one with height 20, the other with height 25. The
other two bars will be drawn side by side at position x=2, one
with height 30 and the other with height 10.
|
cluster_sep type: number
|
Attribute |
Default: 0. The separation between
clustered boxes. The unit is points.
|
Default: None. Specifies the data points. See chart_data.
|
data_label_format type: printf format string
|
Attribute |
Default: None. The
format string for the label displayed besides each
bar. It can be a `printf' style format
string, or a two-parameter function that
takes (x,y) values and returns a string. The appearance of the string produced here can be
controlled using escape sequences. See font.
|
data_label_offset type: (x,y)
|
Attribute |
Default: (0, 5). The location of data labels relative to the sample point. See also attribute data_label_format.
|
direction type: str
|
Attribute |
Default: "vertical". The direction the growth of the bars. The value is either 'horizontal'
or 'vertical'.
|
error_bar type: error_bar.Base
|
Attribute |
Default: None. The style of the error bar. See error_bar.
|
error_minus_col type: int
|
Attribute |
Default: -1. Specifies the column from which the depth of the errorbar is extracted. This attribute is meaningful only when
error_bar != None.
|
error_plus_col type: int
|
Attribute |
Default: -1. The depth of the errorbar is extracted from
this column in data. This attribute is meaningful only
when error_bar != None.
|
fill_style type: fill_style.T
|
Attribute |
Default: By default, a style is picked from standard styles round-robin. See fill_style.. Fill style of each box.
See fill_style.
|
Default: 1. The column from which the height of each bar is extracted.
See also the description of the 'bcol' attribute.
|
label type: str
|
Attribute |
Default: "???". The label to be displayed in the legend. See legend., See font.
|
line_style type: line_style.T
|
Attribute |
Default: line_style.black. The style of the outer frame of each box.
See line_style.
|
qerror_minus_col type: int
|
Attribute |
Default: -1. The depth of the "quartile" errorbar is extracted from
this column in data. This attribute is meaningful only
when error_bar != None.
|
qerror_plus_col type: int
|
Attribute |
Default: -1. The depth of the "quartile" errorbar is extracted from
this column in data. This attribute is meaningful only
when error_bar != None.
|
stack_on type: any
|
Attribute |
Default: None. The value must be either None or bar_plot.T. If not None, bars of this plot are stacked on top of another bar plot.
|
width type: number
|
Attribute |
Default: 5. Width of each box. The unit is in points.
|
Sample bar chart
Below is the source code that produces the above chart.
../demos/bartest.py
from pychart import *
theme.get_options()
data = [(10, 20, 30, 5), (20, 65, 33, 5),
(30, 55, 30, 5), (40, 45, 51, 7), (50, 25, 27, 3)]
chart_object.set_defaults(area.T, size = (150, 120), y_range = (0, None),
x_coord = category_coord.T(data, 0))
chart_object.set_defaults(bar_plot.T, data = data)
# Draw the 1st graph. The Y upper bound is calculated automatically.
ar = area.T(x_axis=axis.X(label="X label", format="/a-30{}%d"),
y_axis=axis.Y(label="Y label", tic_interval=10))
plot1=bar_plot.T(label="foo", cluster=(0, 3))
plot2=bar_plot.T(label="bar", hcol=2, cluster=(1, 3))
plot3=bar_plot.T(label="baz", hcol=3, cluster=(2, 3))
ar.add_plot(plot1, plot2, plot3)
ar.draw()
ar = area.T(legend = legend.T(), loc=(250,0),
x_axis=axis.X(label="X label", format="/a-30{}%d"),
y_axis=axis.Y(label="Y label", tic_interval=10))
bar_plot.fill_styles.reset();
plot1=bar_plot.T(label="foo")
plot2=bar_plot.T(label="bar", hcol=2, stack_on = plot1)
plot3=bar_plot.T(label="baz", hcol=3, stack_on = plot2)
ar.add_plot(plot1, plot2, plot3)
ar.draw()
Vertical bar chart
Below is the source code that produces the above chart.
../demos/bartestv.py
from pychart import *
theme.get_options()
data = [(10, 20, 30, 5), (20, 65, 33, 5), (30, 55, 30, 5), (40, 45, 51, 7),
(50, 25, 27, 3), (60, 75, 30, 5), (70, 80, 42, 5), (80, 62, 32, 5),
(90, 42, 39, 5), (100, 32, 39, 4)]
# The attribute y_coord_system="category" tells that the Y axis values
# should be taken from samples, y_category_col'th column of
# y_category_data. Thus, in this example, Y values will be
# [40,50,60,70,80].
ar = area.T(y_coord = category_coord.T(data[3:8], 0),
x_grid_style=line_style.gray50_dash1,
x_grid_interval=20,
x_range = (0,100),
x_axis=axis.X(label="X label"),
y_axis=axis.Y(label="Y label"),
bg_style = fill_style.gray90,
border_line_style = line_style.default,
legend = legend.T(loc=(80,10)))
# Below call sets the default attributes for all bar plots.
chart_object.set_defaults(bar_plot.T, direction="horizontal", data=data)
ar.add_plot(bar_plot.T(label="foo", cluster=(0,3)))
ar.add_plot(bar_plot.T(label="bar", hcol=2, cluster=(1,3)))
ar.add_plot(bar_plot.T(label="baz", hcol=3, cluster=(2,3)))
ar.draw()