wlanVHTSIGB

Generate VHT-SIG-B waveform

Description

example

y= wlanVHTSIGB(cfg) generates a VHT-SIG-B[1] time-domain waveform for the specified configuration object. See VHT-SIG-B Processing for waveform generation details.

[y,bits] = wlanVHTSIGB(cfg) also outputs VHT-SIG-B information bits.

Examples

collapse all

Generate the VHT-SIG-B waveform for an 80 MHz transmission packet.

Create a VHT configuration object, assign an 80 MHz channel bandwidth, and generate the waveform.

cfgVHT = wlanVHTConfig('ChannelBandwidth','CBW80');
vhtsigb = wlanVHTSIGB(cfgVHT);
size(vhtsigb)
ans = 1×2

   320     1

The 80 MHz waveform has one OFDM symbol and is a total of 320 samples long.

Input Arguments

collapse all

Format configuration, specified as a wlanVHTConfig object.

Output Arguments

collapse all

VHT-SIG-B time-domain waveform, returned as an NS-by-NT matrix. NS is the number of time-domain samples and NT is the number of transmit antennas.

NS is proportional to the channel bandwidth.

ChannelBandwidthNS
'CBW20'80
'CBW40'160
'CBW80'320
'CBW160'640

See VHT-SIG-B Processing. for waveform generation details.

Data Types: double
Complex Number Support: Yes

Signaling bits used for VHT-SIG-B field, returned as an Nbits column vector. Nbits is the number of bits.

The number of output bits changes with the channel bandwidth.

ChannelBandwidthNb
'CBW20'26
'CBW40'27
'CBW80'29
'CBW160'29

See VHT-SIG-B Processing. for waveform generation details.

Data Types: int8

More About

collapse all

VHT-SIG-B

The very high throughput signal B field (VHT-SIG-B) is used for multiuser scenario to set up the data rate and to fine-tune MIMO reception. It is modulated using MCS 0 and is transmitted in a single OFDM symbol.

The VHT-SIG-B field consists of a single OFDM symbol located between the VHT-LTF and the data portion of the VHT format PPDU.

The very high throughput signal B (VHT-SIG-B) field contains the actual rate and A-MPDU length value per user. For a detailed description of the VHT-SIG-B field, see section 21.3.8.3.6 of IEEE® Std 802.11™-2016. The number of bits in the VHT-SIG-B field varies with the channel bandwidth and the assignment depends on whether single user or multiuser scenario in allocated. For single user configurations, the same information is available in the L-SIG field but the VHT-SIG-B field is included for continuity purposes.

Field

VHT MU PPDU Allocation (bits)

VHT SU PPDU Allocation (bits)

Description

 

20 MHz

40 MHz

80 MHz, 160 MHz

20 MHz

40 MHz

80 MHz, 160 MHz

 

VHT-SIG-B

B0-15 (16)

B0-16 (17)

B0-18 (19)

B0-16 (17)

B0-18 (19)

B0-20 (21)

A variable-length field that indicates the size of the data payload in four-byte units. The length of the field depends on the channel bandwidth.

VHT-MCS

B16-19 (4)

B17-20 (4)

B19-22 (4)

N/A

N/A

N/A

A four-bit field that is included for multiuser scenarios only.

Reserved

N/A

N/A

N/A

B17–19 (3)

B19-20 (2)

B21-22 (2)

All ones

Tail

B20-25 (6)

B21-26 (6)

B23-28 (6)

B20-25 (6)

B21-26 (6)

B23-28 (6)

Six zero-bits used to terminate the convolutional code.

Total # bits

26

27

29

26

27

29

 

Bit field repetition

1

2

4

For 160 MHz, the 80 MHz channel is repeated twice.

1

2

4

For 160 MHz, the 80 MHz channel is repeated twice.

 

For a null data packet (NDP), the VHT-SIG-B bits are set according to Table 21-15 of IEEE Std 802.11-2016.

Algorithms

collapse all

VHT-SIG-B Processing

The VHT-SIG-B field is used to set up the data rate and to fine-tune MIMO reception. For single user packets, since the length information can be recovered from the L-SIG and VHT-SIG-A field information, it is not strictly required for the receiver to decode the VHT-SIG-B field.

For algorithm details, refer to IEEE Std 802.11ac™-2013 [1], Section 22.3.4.8.

References

[1] IEEE Std 802.11ac™-2013 IEEE Standard for Information technology — Telecommunications and information exchange between systems — Local and metropolitan area networks — Specific requirements — Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications — Amendment 4: Enhancements for Very High Throughput for Operation in Bands below 6 GHz.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Introduced in R2015b

[1] IEEE Std 802.11ac-2013 Adapted and reprinted with permission from IEEE. Copyright IEEE 2013. All rights reserved.