Inverse multiscale local 1-D polynomial transform
returns
the inverse multiscale local polynomial 1-D transform (MLPT) of y
= imlpt(coefs
,T
,coefsPerLevel
,scalingMoments
)coefs
.
The inputs to imlpt
must be the outputs of mlpt
.
specifies y
= imlpt(___,Name,Value
)mlpt
properties
using one or more Name,Value
pair arguments and
the input arguments from the previous syntax.
Maarten Jansen developed the theoretical foundation of the multiscale
local polynomial transform (MLPT) and algorithms for its efficient
computation [1][2][3]. The MLPT uses a lifting scheme, wherein a kernel
function smooths fine-scale coefficients with a given bandwidth to
obtain the coarser resolution coefficients. The mlpt
function uses only local polynomial
interpolation, but the technique developed by Jansen is more general
and admits many other kernel types with adjustable bandwidths [2].
[1] Jansen, M. "Multiscale Local Polynomial Smoothing in a Lifted Pyramid for Non-Equispaced Data". IEEE Transactions on Signal Processing. Vol. 61, Number 3, 2013, pp.545-555.
[2] Jansen, M., and M. Amghar. "Multiscale local polynomial decompositions using bandwidths as scales". Statistics and Computing (forthcoming). 2016.
[3] Jansen, M., and Patrick Oonincx. Second Generation Wavelets and Applications. London: Springer, 2005.