Class: invertedImageIndex
Remove images from image index
removeImages(imageIndex,indices)
removeImages(
removes
the images from the imageIndex
,indices
)imageIndex
object that correspond
to the indices
input.
imageIndex
— Image search indexinvertedImageIndex
objectImage search index, specified as an invertedImageIndex
object.
indices
— Image indicesImage indices, specified as a row or column vector. The indices
correspond to the images within imageIndex.Location
.
Create image set.
dataDir = fullfile(toolboxdir('vision'),'visiondata','imageSets','cups'); imds = imageDatastore(dataDir);
Index the image set.
imageIndex = indexImages(imds)
Creating an inverted image index using Bag-Of-Features. ------------------------------------------------------- Creating Bag-Of-Features. ------------------------- * Selecting feature point locations using the Detector method. * Extracting SURF features from the selected feature point locations. ** detectSURFFeatures is used to detect key points for feature extraction. * Extracting features from 6 images...done. Extracted 1708 features. * Keeping 80 percent of the strongest features from each category. * Balancing the number of features across all image categories to improve clustering. ** Image category 1 has the least number of strongest features: 1366. ** Using the strongest 1366 features from each of the other image categories. * Using K-Means clustering to create a 20000 word visual vocabulary. * Number of features : 1366 * Number of clusters (K) : 1366 * Initializing cluster centers...100.00%. * Clustering...completed 1/100 iterations (~0.04 seconds/iteration)...converged in 1 iterations. * Finished creating Bag-Of-Features Encoding images using Bag-Of-Features. -------------------------------------- * Encoding 6 images...done. Finished creating the image index.
imageIndex = invertedImageIndex with properties: ImageLocation: {6x1 cell} ImageWords: [6x1 vision.internal.visualWords] WordFrequency: [1x1366 double] BagOfFeatures: [1x1 bagOfFeatures] MatchThreshold: 0.0100 WordFrequencyRange: [0.0100 0.9000]
imageIndex.ImageLocation
ans = 6x1 cell
{'/mathworks/devel/bat/BR2020bd/build/matlab/toolbox/vision/visiondata/imageSets/cups/bigMug.jpg' }
{'/mathworks/devel/bat/BR2020bd/build/matlab/toolbox/vision/visiondata/imageSets/cups/blueCup.jpg' }
{'/mathworks/devel/bat/BR2020bd/build/matlab/toolbox/vision/visiondata/imageSets/cups/handMade.jpg' }
{'/mathworks/devel/bat/BR2020bd/build/matlab/toolbox/vision/visiondata/imageSets/cups/holdingCup.jpg'}
{'/mathworks/devel/bat/BR2020bd/build/matlab/toolbox/vision/visiondata/imageSets/cups/plaid.jpg' }
{'/mathworks/devel/bat/BR2020bd/build/matlab/toolbox/vision/visiondata/imageSets/cups/plainWhite.jpg'}
Remove first and third image.
removeImages(imageIndex,[1 3]); imageIndex.ImageLocation
ans = 4x1 cell
{'/mathworks/devel/bat/BR2020bd/build/matlab/toolbox/vision/visiondata/imageSets/cups/blueCup.jpg' }
{'/mathworks/devel/bat/BR2020bd/build/matlab/toolbox/vision/visiondata/imageSets/cups/holdingCup.jpg'}
{'/mathworks/devel/bat/BR2020bd/build/matlab/toolbox/vision/visiondata/imageSets/cups/plaid.jpg' }
{'/mathworks/devel/bat/BR2020bd/build/matlab/toolbox/vision/visiondata/imageSets/cups/plainWhite.jpg'}
You have a modified version of this example. Do you want to open this example with your edits?