Resume fitting LDA model
returns an updated LDA model by training for more iterations on the bag-of-words or
bag-of-n-grams model updatedMdl
= resume(ldaMdl
,bag
)bag
. The input bag
must be the same model used to fit ldaMdl
.
returns an updated LDA model by training for more iterations on the documents
represented by the matrix of word counts updatedMdl
= resume(ldaMdl
,counts
)counts
. The input
counts
must be the same matrix used to fit
ldaMdl
.
specifies additional options using one or more name-value pair arguments.updatedMdl
= resume(___,Name,Value
)
To reproduce the results in this example, set rng
to 'default'
.
rng('default')
Load the example data. The file sonnetsPreprocessed.txt
contains preprocessed versions of Shakespeare's sonnets. The file contains one sonnet per line, with words separated by a space. Extract the text from sonnetsPreprocessed.txt
, split the text into documents at newline characters, and then tokenize the documents.
filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);
documents = tokenizedDocument(textData);
Create a bag-of-words model using bagOfWords
.
bag = bagOfWords(documents)
bag = bagOfWords with properties: Counts: [154x3092 double] Vocabulary: [1x3092 string] NumWords: 3092 NumDocuments: 154
Fit an LDA model with four topics. The resume
function does not support the default solver for fitlda
. Set the LDA solver to be collapsed variational Bayes, zeroth order.
numTopics = 4; mdl = fitlda(bag,numTopics,'Solver','cvb0')
===================================================================================== | Iteration | Time per | Relative | Training | Topic | Topic | | | iteration | change in | perplexity | concentration | concentration | | | (seconds) | log(L) | | | iterations | ===================================================================================== | 0 | 0.01 | | 3.292e+03 | 1.000 | 0 | | 1 | 0.01 | 1.4970e-01 | 1.147e+03 | 1.000 | 0 | | 2 | 0.00 | 7.1229e-03 | 1.091e+03 | 1.000 | 0 | | 3 | 0.00 | 8.1261e-03 | 1.031e+03 | 1.000 | 0 | | 4 | 0.00 | 8.8626e-03 | 9.703e+02 | 1.000 | 0 | | 5 | 0.00 | 8.5486e-03 | 9.154e+02 | 1.000 | 0 | | 6 | 0.00 | 7.4632e-03 | 8.703e+02 | 1.000 | 0 | | 7 | 0.00 | 6.0480e-03 | 8.356e+02 | 1.000 | 0 | | 8 | 0.00 | 4.5955e-03 | 8.102e+02 | 1.000 | 0 | | 9 | 0.00 | 3.4068e-03 | 7.920e+02 | 1.000 | 0 | | 10 | 0.00 | 2.5353e-03 | 7.788e+02 | 1.000 | 0 | | 11 | 0.01 | 1.9089e-03 | 7.690e+02 | 1.222 | 10 | | 12 | 0.00 | 1.2486e-03 | 7.626e+02 | 1.176 | 7 | | 13 | 0.00 | 1.1243e-03 | 7.570e+02 | 1.125 | 7 | | 14 | 0.00 | 9.1253e-04 | 7.524e+02 | 1.079 | 7 | | 15 | 0.00 | 7.5878e-04 | 7.486e+02 | 1.039 | 6 | | 16 | 0.00 | 6.6181e-04 | 7.454e+02 | 1.004 | 6 | | 17 | 0.00 | 6.0400e-04 | 7.424e+02 | 0.974 | 6 | | 18 | 0.00 | 5.6244e-04 | 7.396e+02 | 0.948 | 6 | | 19 | 0.00 | 5.0548e-04 | 7.372e+02 | 0.926 | 5 | | 20 | 0.00 | 4.2796e-04 | 7.351e+02 | 0.905 | 5 | ===================================================================================== | Iteration | Time per | Relative | Training | Topic | Topic | | | iteration | change in | perplexity | concentration | concentration | | | (seconds) | log(L) | | | iterations | ===================================================================================== | 21 | 0.00 | 3.4941e-04 | 7.334e+02 | 0.887 | 5 | | 22 | 0.00 | 2.9495e-04 | 7.320e+02 | 0.871 | 5 | | 23 | 0.00 | 2.6300e-04 | 7.307e+02 | 0.857 | 5 | | 24 | 0.00 | 2.5200e-04 | 7.295e+02 | 0.844 | 4 | | 25 | 0.00 | 2.4150e-04 | 7.283e+02 | 0.833 | 4 | | 26 | 0.00 | 2.0549e-04 | 7.273e+02 | 0.823 | 4 | | 27 | 0.00 | 1.6441e-04 | 7.266e+02 | 0.813 | 4 | | 28 | 0.00 | 1.3256e-04 | 7.259e+02 | 0.805 | 4 | | 29 | 0.00 | 1.1094e-04 | 7.254e+02 | 0.798 | 4 | | 30 | 0.00 | 9.2849e-05 | 7.249e+02 | 0.791 | 4 | =====================================================================================
mdl = ldaModel with properties: NumTopics: 4 WordConcentration: 1 TopicConcentration: 0.7908 CorpusTopicProbabilities: [0.2654 0.2531 0.2480 0.2336] DocumentTopicProbabilities: [154x4 double] TopicWordProbabilities: [3092x4 double] Vocabulary: [1x3092 string] TopicOrder: 'initial-fit-probability' FitInfo: [1x1 struct]
View information about the fit.
mdl.FitInfo
ans = struct with fields:
TerminationCode: 1
TerminationStatus: "Relative tolerance on log-likelihood satisfied."
NumIterations: 30
NegativeLogLikelihood: 6.3042e+04
Perplexity: 724.9445
Solver: "cvb0"
History: [1x1 struct]
Resume fitting the LDA model with a lower log-likelihood tolerance.
tolerance = 1e-5; updatedMdl = resume(mdl,bag, ... 'LogLikelihoodTolerance',tolerance)
===================================================================================== | Iteration | Time per | Relative | Training | Topic | Topic | | | iteration | change in | perplexity | concentration | concentration | | | (seconds) | log(L) | | | iterations | ===================================================================================== | 30 | 0.00 | | 7.249e+02 | 0.791 | 0 | | 31 | 0.00 | 8.0569e-05 | 7.246e+02 | 0.785 | 3 | | 32 | 0.00 | 7.4692e-05 | 7.242e+02 | 0.779 | 3 | | 33 | 0.00 | 6.9802e-05 | 7.239e+02 | 0.774 | 3 | | 34 | 0.00 | 6.1154e-05 | 7.236e+02 | 0.770 | 3 | | 35 | 0.00 | 5.3163e-05 | 7.233e+02 | 0.766 | 3 | | 36 | 0.00 | 4.7807e-05 | 7.231e+02 | 0.762 | 3 | | 37 | 0.00 | 4.1820e-05 | 7.229e+02 | 0.759 | 3 | | 38 | 0.00 | 3.6237e-05 | 7.227e+02 | 0.756 | 3 | | 39 | 0.00 | 3.1819e-05 | 7.226e+02 | 0.754 | 2 | | 40 | 0.00 | 2.7772e-05 | 7.224e+02 | 0.751 | 2 | | 41 | 0.00 | 2.5238e-05 | 7.223e+02 | 0.749 | 2 | | 42 | 0.00 | 2.2052e-05 | 7.222e+02 | 0.747 | 2 | | 43 | 0.00 | 1.8471e-05 | 7.221e+02 | 0.745 | 2 | | 44 | 0.00 | 1.5638e-05 | 7.221e+02 | 0.744 | 2 | | 45 | 0.00 | 1.3735e-05 | 7.220e+02 | 0.742 | 2 | | 46 | 0.00 | 1.2298e-05 | 7.219e+02 | 0.741 | 2 | | 47 | 0.00 | 1.0905e-05 | 7.219e+02 | 0.739 | 2 | | 48 | 0.00 | 9.5581e-06 | 7.218e+02 | 0.738 | 2 | =====================================================================================
updatedMdl = ldaModel with properties: NumTopics: 4 WordConcentration: 1 TopicConcentration: 0.7383 CorpusTopicProbabilities: [0.2679 0.2517 0.2495 0.2309] DocumentTopicProbabilities: [154x4 double] TopicWordProbabilities: [3092x4 double] Vocabulary: [1x3092 string] TopicOrder: 'initial-fit-probability' FitInfo: [1x1 struct]
View information about the fit.
updatedMdl.FitInfo
ans = struct with fields:
TerminationCode: 1
TerminationStatus: "Relative tolerance on log-likelihood satisfied."
NumIterations: 48
NegativeLogLikelihood: 6.3001e+04
Perplexity: 721.8357
Solver: "cvb0"
History: [1x1 struct]
ldaMdl
— Input LDA modelldaModel
objectInput LDA model, specified as an ldaModel
object. To resume fitting a model, you must fit
ldaMdl
with solver 'savb'
,
'avb'
, or 'cvb0'
.
bag
— Input modelbagOfWords
object | bagOfNgrams
objectInput bag-of-words or bag-of-n-grams model, specified as a bagOfWords
object or a bagOfNgrams
object. If bag
is a
bagOfNgrams
object, then the function treats each n-gram as a
single word.
counts
— Frequency counts of wordsFrequency counts of words, specified as a matrix of nonnegative integers. If you specify
'DocumentsIn'
to be 'rows'
, then the value
counts(i,j)
corresponds to the number of times the
jth word of the vocabulary appears in the ith
document. Otherwise, the value counts(i,j)
corresponds to the number
of times the ith word of the vocabulary appears in the
jth document.
Note
The arguments bag
and counts
must be the
same used to fit ldaMdl
.
Specify optional
comma-separated pairs of Name,Value
arguments. Name
is
the argument name and Value
is the corresponding value.
Name
must appear inside quotes. You can specify several name and value
pair arguments in any order as
Name1,Value1,...,NameN,ValueN
.
'LogLikelihoodTolerance',0.001
specifies a
log-likelihood tolerance of 0.001.'DocumentsIn'
— Orientation of documents'rows'
(default) | 'columns'
Orientation of documents in the word count matrix, specified as the comma-separated pair
consisting of 'DocumentsIn'
and one of the following:
'rows'
– Input is a matrix of word counts with rows corresponding
to documents.
'columns'
– Input is a transposed matrix of word counts with
columns corresponding to documents.
This option only applies if you specify the input documents as a matrix of word counts.
Note
If you orient your word count matrix so that documents correspond to columns and specify
'DocumentsIn','columns'
, then you might experience a significant
reduction in optimization-execution time.
'FitTopicConcentration'
— Option for fitting topic concentration parametertrue
| false
Option for fitting topic concentration, specified as the comma-separated pair consisting of 'FitTopicConcentration'
and either true
or false
.
The default value is the value used to fit
ldaMdl
.
Example: 'FitTopicConcentration',true
Data Types: logical
'FitTopicProbabilities'
— Option for fitting topic probabilitiestrue
| false
Option for fitting topic concentration, specified as the comma-separated pair consisting of 'FitTopicConcentration'
and either true
or false
.
The default value is the value used to fit
ldaMdl
.
The function fits the Dirichlet prior on the topic mixtures, where is the topic concentration and are the corpus topic probabilities which sum to 1.
Example: 'FitTopicProbabilities',true
Data Types: logical
'LogLikelihoodTolerance'
— Relative tolerance on log-likelihood0.0001
(default) | positive scalarRelative tolerance on log-likelihood, specified as the comma-separated pair consisting
of 'LogLikelihoodTolerance'
and a positive scalar. The optimization
terminates when this tolerance is reached.
Example: 'LogLikelihoodTolerance',0.001
'IterationLimit'
— Maximum number of iterations100
(default) | positive integerMaximum number of iterations, specified as the comma-separated pair consisting of 'IterationLimit'
and a positive integer.
This option supports models fitted with batch solvers only
('cgs'
, 'avb'
, and
'cvb0'
).
Example: 'IterationLimit',200
'DataPassLimit'
— Maximum number of passes through dataMaximum number of passes through the data, specified as the comma-separated pair consisting of 'DataPassLimit'
and a positive integer.
If you specify 'DataPassLimit'
but not 'MiniBatchLimit'
,
then the default value of 'MiniBatchLimit'
is ignored. If you specify
both 'DataPassLimit'
and 'MiniBatchLimit'
, then
resume
uses the argument that results in processing the fewest
observations.
This option supports models fitted with stochastic solvers only
('savb'
).
Example: 'DataPassLimit',2
'MiniBatchLimit'
— Maximum number of mini-batch passesMaximum number of mini-batch passes, specified as the comma-separated pair consisting of 'MiniBatchLimit'
and a positive integer.
If you specify 'MiniBatchLimit'
but not 'DataPassLimit'
,
then resume
ignores the default value of
'DataPassLimit'
. If you specify both
'MiniBatchLimit'
and 'DataPassLimit'
, then
resume
uses the argument that results in processing the fewest
observations. The default value is ceil(numDocuments/MiniBatchSize)
,
where numDocuments
is the number of input documents.
This option supports models fitted with stochastic solvers only
('savb'
).
Example: 'MiniBatchLimit',200
'MiniBatchSize'
— Mini-batch sizeMini-batch size, specified as the comma-separated pair consisting of 'MiniBatchLimit'
and a positive integer. The function processes MiniBatchSize
documents in each iteration.
This option supports models fitted with stochastic solvers only
('savb'
).
Example: 'MiniBatchSize',512
'ValidationData'
— Validation data[]
(default) | bagOfWords
object | bagOfNgrams
object | sparse matrix of word countsValidation data to monitor optimization convergence, specified as the comma-separated
pair consisting of 'ValidationData'
and a bagOfWords
object, a bagOfNgrams
object, or a sparse matrix of word counts. If the
validation data is a matrix, then the data must have the same orientation and the same
number of words as the input documents.
'ValidationFrequency'
— Frequency of model validationFrequency of model validation in number of iterations, specified as the comma-separated pair consisting of 'ValidationFrequency'
and a positive integer.
The default value depends on the solver used to fit the model. For the stochastic solver, the default value is 10. For the other solvers, the default value is 1.
'Verbose'
— Verbosity levelVerbosity level, specified as the comma-separated pair consisting of
'Verbose'
and one of the following:
0 – Do not display verbose output.
1 – Display progress information.
Example: 'Verbose',0
updatedMdl
— Updated LDA modelldaModel
object (default)Updated LDA model, returned as an ldaModel
object.
bagOfNgrams
| bagOfWords
| fitlda
| ldaModel
| logp
| predict
| transform
| wordcloud
You have a modified version of this example. Do you want to open this example with your edits?