LaTeX form of symbolic expression
Find the LaTeX form of the symbolic expressions x^2
+ 1/x
and sin(pi*x) + alpha
.
syms x phi chr = latex(x^2 + 1/x) chr = latex(sin(pi*x) + phi)
chr = '\frac{1}{x}+x^2' chr = '\phi +\sin\left(\pi \,x\right)'
Find the LaTeX form of the symbolic matrix
M
.
syms x M = [sym(1)/3 x; exp(x) x^2] chrM = latex(M)
M = [ 1/3, x] [ exp(x), x^2] chrM = '\left(\begin{array}{cc} \frac{1}{3} & x\\ {\mathrm{e}}^x & x^2 \end{array}\right)'
Modify generated LaTeX by setting symbolic preferences using
the sympref
function.
Generate the LaTeX form of the expression π with the default symbolic preference.
sympref('default'); chr = latex(sym(pi))
chr = '\pi '
Set the 'FloatingPointOutput'
preference to
true
to return symbolic output in floating-point
format. Generate the LaTeX form of π in
floating-point format.
sympref('FloatingPointOutput',true); chr = latex(sym(pi))
chr = '3.1416'
Now change the output order of a symbolic polynomial. Create a symbolic
polynomial and set 'PolynomialDisplayStyle'
preference to
'ascend'
. Generate LaTeX form of the polynomial
sorted in ascending
order.
syms x; poly = x^2 - 2*x + 1; sympref('PolynomialDisplayStyle','ascend'); chr = latex(poly)
chr = '1-2\,x+x^2'
The preferences you set using sympref
persist through
your current and future MATLAB® sessions. Restore the default values by specifying the
'default'
option.
sympref('default');
For and from to , plot the 3-D surface . Store the axes handle in a
by using gca
. Display the axes box by using a.Box
and set the tick label interpreter to latex
.
Create the x-axis ticks by spanning the x-axis limits at intervals of pi/2
. Convert the axis limits to precise multiples of pi/2
using round
and get the symbolic tick values in S
. Display the ticks by setting the XTick
property of a
to S
. Create the LaTeX labels for the x-axis by using arrayfun
to apply latex
to S
and then concatenating $
. Display the labels by assigning them to the XTickLabel
property of a
.
Repeat these steps for the y-axis. Set the x- and y-axes labels and the title using the latex
interpreter.
syms x y f = y.*sin(x)-x.*cos(y); fsurf(f,[-2*pi 2*pi]) a = gca; a.TickLabelInterpreter = 'latex'; a.Box = 'on'; a.BoxStyle = 'full'; S = sym(a.XLim(1):pi/2:a.XLim(2)); S = sym(round(vpa(S/pi*2))*pi/2); a.XTick = double(S); a.XTickLabel = strcat('$',arrayfun(@latex, S, 'UniformOutput', false),'$'); S = sym(a.YLim(1):pi/2:a.YLim(2)); S = sym(round(vpa(S/pi*2))*pi/2); a.YTick = double(S); a.YTickLabel = strcat('$',arrayfun(@latex, S, 'UniformOutput', false),'$'); xlabel('x','Interpreter','latex'); ylabel('y','Interpreter','latex'); zlabel('z','Interpreter','latex'); title(['$' latex(f) '$ for $x$ and $y$ in $[-2\pi,2\pi]$'],'Interpreter','latex')
S
— InputInput, specified as a symbolic number, variable, vector, matrix, multidimensional array, function, or expression.
You have a modified version of this example. Do you want to open this example with your edits?