Factorization
uses additional options specified by one or more F
= factor(___,Name,Value
)Name,Value
pair
arguments. This syntax can use any of the input arguments from the
previous syntaxes.
F = factor(823429252)
F = 2 2 59 283 12329
To factor integers greater than flintmax
,
convert the integer to a symbolic object using sym
.
Then place the number in quotation marks to represent it accurately.
F = factor(sym('82342925225632328'))
F = [ 2, 2, 2, 251, 401, 18311, 5584781]
To factor a negative integer, convert it to a symbolic object
using sym
.
F = factor(sym(-92465))
F = [ -1, 5, 18493]
Perform prime factorization for 41758540882408627201
.
Since the integer is greater than flintmax
, convert
it to a symbolic object using sym
, and place
the number in quotation marks to represent it accurately.
n = sym('41758540882408627201'); factor(n)
ans = [ 479001599, 87178291199]
Factor the fraction 112/81
by
converting it into a symbolic object using sym
.
F = factor(sym(112/81))
F = [ 2, 2, 2, 2, 7, 1/3, 1/3, 1/3, 1/3]
Factor the polynomial x^6-1
.
syms x
F = factor(x^6-1)
F = [ x - 1, x + 1, x^2 + x + 1, x^2 - x + 1]
Factor the polynomial y^6-x^6
.
syms y
F = factor(y^6-x^6)
F = [ -1, x - y, x + y, x^2 + x*y + y^2, x^2 - x*y + y^2]
Factor y^2*x^2
for factors
containing x
.
syms x y F = factor(y^2*x^2,x)
F = [ y^2, x, x]
factor
combines all factors without x
into
the first element. The remaining elements of F
contain
irreducible factors that contain x
.
Factor the polynomial y
for factors containing
symbolic variables b
and c
.
syms a b c d y = -a*b^5*c*d*(a^2 - 1)*(a*d - b*c); F = factor(y,[b c])
F = [ -a*d*(a - 1)*(a + 1), b, b, b, b, b, c, a*d - b*c]
factor
combines all factors without b
or c
into
the first element of F
. The remaining elements
of F
contain irreducible factors of y
that
contain either b
or c
.
Use the FactorMode
argument
to choose a particular factorization mode.
Factor an expression without specifying the factorization mode.
By default, factor
uses factorization over rational
numbers. In this mode, factor
keeps rational
numbers in their exact symbolic form.
syms x factor(x^3 + 2, x)
ans = x^3 + 2
Factor the same expression, but this time use numeric factorization over real numbers. This mode factors the expression into linear and quadratic irreducible polynomials with real coefficients and converts all numeric values to floating-point numbers.
factor(x^3 + 2, x, 'FactorMode', 'real')
ans = [ x + 1.2599210498948731647672106072782,... x^2 - 1.2599210498948731647672106072782*x + 1.5874010519681994747517056392723]
Factor this expression using factorization over complex numbers.
In this mode, factor
reduces quadratic polynomials
to linear expressions with complex coefficients. This mode converts
all numeric values to floating-point numbers.
factor(x^3 + 2, x, 'FactorMode', 'complex')
ans = [ x + 1.2599210498948731647672106072782,... x - 0.62996052494743658238360530363911 + 1.0911236359717214035600726141898i,... x - 0.62996052494743658238360530363911 - 1.0911236359717214035600726141898i]
Factor this expression using the full factorization mode. This mode factors the expression into linear expressions, reducing quadratic polynomials to linear expressions with complex coefficients. This mode keeps rational numbers in their exact symbolic form.
factor(x^3 + 2, x, 'FactorMode', 'full')
ans = [ x + 2^(1/3),... x - 2^(1/3)*((3^(1/2)*1i)/2 + 1/2),... x + 2^(1/3)*((3^(1/2)*1i)/2 - 1/2)]
Approximate the result with floating-point numbers by using vpa
.
Because the expression does not contain any symbolic parameters besides
the variable x
, the result is the same as in complex
factorization mode.
vpa(ans)
ans = [ x + 1.2599210498948731647672106072782,... x - 0.62996052494743658238360530363911 - 1.0911236359717214035600726141898i,... x - 0.62996052494743658238360530363911 + 1.0911236359717214035600726141898i]
RootOf
In the full factorization mode,factor
also
can return results as a symbolic sums over polynomial roots expressed
as RootOf
.
Factor this expression.
syms x s = factor(x^3 + x - 3, x, 'FactorMode','full')
s = [ x - root(z^3 + z - 3, z, 1),... x - root(z^3 + z - 3, z, 2),... x - root(z^3 + z - 3, z, 3)]
Approximate the result with floating-point numbers by using vpa
.
vpa(s)
ans = [ x - 1.2134116627622296341321313773815,... x + 0.60670583138111481706606568869074 + 1.450612249188441526515442203395i,... x + 0.60670583138111481706606568869074 - 1.450612249188441526515442203395i]
To factor an integer greater than flintmax
,
wrap the integer with sym
. Then place the integer
in quotation marks to represent it accurately, for example, sym('465971235659856452')
.
To factor a negative integer, wrap the integer with sym
,
for example, sym(-3)
.
collect
| combine
| divisors
| expand
| horner
| numden
| rewrite
| simplify
| simplifyFraction