Normal negative loglikelihood
[
also returns the inverse of the Fisher information matrix
nlogL
,aVar
] = normlike(___)aVar
, using any of the input argument combinations in
the previous syntaxes. If values in params
are the maximum
likelihood estimates (MLEs) of the parameters, aVar
is an
approximation to the asymptotic covariance matrix.
normlike
is a function specific to normal distribution.
Statistics and Machine Learning Toolbox™ also offers the generic functions mlecov
, fitdist
, negloglik
, and proflik
and the Distribution Fitter app, which support various
probability distributions.
mlecov
returns the asymptotic
covariance matrix of the MLEs of the parameters for a distribution specified
by a custom probability density function. For example,
mlecov(params,x,'pdf',@normpdf)
returns the
asymptotic covariance matrix of the MLEs for the normal distribution.
Create a NormalDistribution
probability
distribution object by fitting the distribution to data using the fitdist
function or the Distribution Fitter app. The object
property ParameterCovariance
stores the covariance matrix of the
parameter estimates. To obtain the negative loglikelihood of the parameter
estimates and the profile of the likelihood function, pass the object to
negloglik
and proflik
, respectively.
[1] Evans, M., N. Hastings, and B. Peacock. Statistical Distributions. 2nd ed. Hoboken, NJ: John Wiley & Sons, Inc., 1993.
[2] Lawless, J. F. Statistical Models and Methods for Lifetime Data. Hoboken, NJ: Wiley-Interscience, 1982.
[3] Meeker, W. Q., and L. A. Escobar. Statistical Methods for Reliability Data. Hoboken, NJ: John Wiley & Sons, Inc., 1998.
Distribution Fitter | mle
| mlecov
| negloglik
| NormalDistribution
| normcdf
| normfit
| norminv
| proflik