Classification margins for cross-validated kernel ECOC model
returns the classification
margins obtained by the cross-validated kernel ECOC model (margin
= kfoldMargin(CVMdl
)ClassificationPartitionedKernelECOC
) CVMdl
. For every fold,
kfoldMargin
computes the classification margins for validation-fold
observations using a model trained on training-fold observations.
returns classification margins with additional options specified by one or more name-value
pair arguments. For example, specify the binary learner loss function, decoding scheme, or
verbosity level.margin
= kfoldMargin(CVMdl
,Name,Value
)
Load Fisher's iris data set. X
contains flower measurements, and Y
contains the names of flower species.
load fisheriris
X = meas;
Y = species;
Cross-validate an ECOC model composed of kernel binary learners.
CVMdl = fitcecoc(X,Y,'Learners','kernel','CrossVal','on')
CVMdl = ClassificationPartitionedKernelECOC CrossValidatedModel: 'KernelECOC' ResponseName: 'Y' NumObservations: 150 KFold: 10 Partition: [1x1 cvpartition] ClassNames: {'setosa' 'versicolor' 'virginica'} ScoreTransform: 'none' Properties, Methods
CVMdl
is a ClassificationPartitionedKernelECOC
model. By default, the software implements 10-fold cross-validation. To specify a different number of folds, use the 'KFold'
name-value pair argument instead of 'Crossval'
.
Estimate the classification margins for validation-fold observations.
m = kfoldMargin(CVMdl); size(m)
ans = 1×2
150 1
m
is a 150-by-1 vector. m(j)
is the classification margin for observation j
.
Plot the k-fold margins using a boxplot.
boxplot(m,'Labels','All Observations') title('Distribution of Margins')
Perform feature selection by comparing k-fold margins from multiple models. Based solely on this criterion, the classifier with the greatest margins is the best classifier.
Load Fisher's iris data set. X
contains flower measurements, and Y
contains the names of flower species.
load fisheriris
X = meas;
Y = species;
Randomly choose half of the predictor variables.
rng(1); % For reproducibility p = size(X,2); % Number of predictors idxPart = randsample(p,ceil(0.5*p));
Cross-validate two ECOC models composed of kernel classification models: one that uses all of the predictors, and one that uses half of the predictors.
CVMdl = fitcecoc(X,Y,'Learners','kernel','CrossVal','on'); PCVMdl = fitcecoc(X(:,idxPart),Y,'Learners','kernel','CrossVal','on');
CVMdl
and PCVMdl
are ClassificationPartitionedKernelECOC
models. By default, the software implements 10-fold cross-validation. To specify a different number of folds, use the 'KFold'
name-value pair argument instead of 'Crossval'
.
Estimate the k-fold margins for each classifier.
fullMargins = kfoldMargin(CVMdl); partMargins = kfoldMargin(PCVMdl);
Plot the distribution of the margin sets using box plots.
boxplot([fullMargins partMargins], ... 'Labels',{'All Predictors','Half of the Predictors'}); title('Distribution of Margins')
The PCVMdl
margin distribution is similar to the CVMdl
margin distribution.
CVMdl
— Cross-validated kernel ECOC modelClassificationPartitionedKernelECOC
modelCross-validated kernel ECOC model, specified as a ClassificationPartitionedKernelECOC
model. You can create a
ClassificationPartitionedKernelECOC
model by training an ECOC model
using fitcecoc
and specifying these name-value
pair arguments:
'Learners'
– Set the value to
'kernel'
, a template object returned by
templateKernel
, or a cell array of such template
objects.
One of the arguments 'CrossVal'
,
'CVPartition'
, 'Holdout'
,
'KFold'
, or 'Leaveout'
.
Specify optional
comma-separated pairs of Name,Value
arguments. Name
is
the argument name and Value
is the corresponding value.
Name
must appear inside quotes. You can specify several name and value
pair arguments in any order as
Name1,Value1,...,NameN,ValueN
.
kfoldMargin(CVMdl,'Verbose',1)
specifies to display
diagnostic messages in the Command Window.'BinaryLoss'
— Binary learner loss function'hamming'
| 'linear'
| 'logit'
| 'exponential'
| 'binodeviance'
| 'hinge'
| 'quadratic'
| function handleBinary learner loss function, specified as the comma-separated pair consisting of
'BinaryLoss'
and a built-in loss function name or function handle.
This table contains names and descriptions of the built-in functions, where yj is a class label for a particular binary learner (in the set {–1,1,0}), sj is the score for observation j, and g(yj,sj) is the binary loss formula.
Value | Description | Score Domain | g(yj,sj) |
---|---|---|---|
'binodeviance' | Binomial deviance | (–∞,∞) | log[1 + exp(–2yjsj)]/[2log(2)] |
'exponential' | Exponential | (–∞,∞) | exp(–yjsj)/2 |
'hamming' | Hamming | [0,1] or (–∞,∞) | [1 – sign(yjsj)]/2 |
'hinge' | Hinge | (–∞,∞) | max(0,1 – yjsj)/2 |
'linear' | Linear | (–∞,∞) | (1 – yjsj)/2 |
'logit' | Logistic | (–∞,∞) | log[1 + exp(–yjsj)]/[2log(2)] |
'quadratic' | Quadratic | [0,1] | [1 – yj(2sj – 1)]2/2 |
The software normalizes binary losses such that the loss is 0.5 when yj = 0. Also, the software calculates the mean binary loss for each class.
For a custom binary loss function, for example,
customFunction
, specify its function handle
'BinaryLoss',@customFunction
.
customFunction
has this form:
bLoss = customFunction(M,s)
M
is the
K-by-L coding matrix
stored in Mdl.CodingMatrix
.
s
is the 1-by-L row
vector of classification scores.
bLoss
is the classification loss. This
scalar aggregates the binary losses for every learner in a
particular class. For example, you can use the mean binary loss
to aggregate the loss over the learners for each class.
K is the number of classes.
L is the number of binary learners.
By default, if all binary learners are kernel classification models using SVM, then
BinaryLoss
is 'hinge'
. If all binary
learners are kernel classification models using logistic regression, then
BinaryLoss
is 'quadratic'
.
Example: 'BinaryLoss','binodeviance'
Data Types: char
| string
| function_handle
'Decoding'
— Decoding scheme'lossweighted'
(default) | 'lossbased'
Decoding scheme that aggregates the binary losses, specified as the
comma-separated pair consisting of 'Decoding'
and
'lossweighted'
or 'lossbased'
. For more
information, see Binary Loss.
Example: 'Decoding','lossbased'
'Options'
— Estimation options[]
(default) | structure array returned by statset
Estimation options, specified as the comma-separated pair consisting
of 'Options'
and a structure array returned by statset
.
To invoke parallel computing:
You need a Parallel Computing Toolbox™ license.
Specify 'Options',statset('UseParallel',true)
.
'Verbose'
— Verbosity level0
(default) | 1
Verbosity level, specified as the comma-separated pair consisting of
'Verbose'
and 0
or 1
.
Verbose
controls the number of diagnostic messages that the
software displays in the Command Window.
If Verbose
is 0
, then the software does not display
diagnostic messages. Otherwise, the software displays diagnostic messages.
Example: 'Verbose',1
Data Types: single
| double
margin
— Classification marginsClassification
margins, returned as a numeric vector. margin
is an
n-by-1 vector, where each row is the margin of the corresponding
observation and n is the number of observations
(size(CVMdl.Y,1)
).
The classification margin is, for each observation, the difference between the negative loss for the true class and the maximal negative loss among the false classes. If the margins are on the same scale, then they serve as a classification confidence measure. Among multiple classifiers, those that yield greater margins are better.
A binary loss is a function of the class and classification score that determines how well a binary learner classifies an observation into the class.
Suppose the following:
mkj is element (k,j) of the coding design matrix M (that is, the code corresponding to class k of binary learner j).
sj is the score of binary learner j for an observation.
g is the binary loss function.
is the predicted class for the observation.
In loss-based decoding [Escalera et al.], the class producing the minimum sum of the binary losses over binary learners determines the predicted class of an observation, that is,
In loss-weighted decoding [Escalera et al.], the class producing the minimum average of the binary losses over binary learners determines the predicted class of an observation, that is,
Allwein et al. suggest that loss-weighted decoding improves classification accuracy by keeping loss values for all classes in the same dynamic range.
This table summarizes the supported loss functions, where yj is a class label for a particular binary learner (in the set {–1,1,0}), sj is the score for observation j, and g(yj,sj).
Value | Description | Score Domain | g(yj,sj) |
---|---|---|---|
'binodeviance' | Binomial deviance | (–∞,∞) | log[1 + exp(–2yjsj)]/[2log(2)] |
'exponential' | Exponential | (–∞,∞) | exp(–yjsj)/2 |
'hamming' | Hamming | [0,1] or (–∞,∞) | [1 – sign(yjsj)]/2 |
'hinge' | Hinge | (–∞,∞) | max(0,1 – yjsj)/2 |
'linear' | Linear | (–∞,∞) | (1 – yjsj)/2 |
'logit' | Logistic | (–∞,∞) | log[1 + exp(–yjsj)]/[2log(2)] |
'quadratic' | Quadratic | [0,1] | [1 – yj(2sj – 1)]2/2 |
The software normalizes binary losses such that the loss is 0.5 when yj = 0, and aggregates using the average of the binary learners [Allwein et al.].
Do not confuse the binary loss with the overall classification loss (specified by the
'LossFun'
name-value pair argument of the loss
and
predict
object functions), which measures how well an ECOC classifier
performs as a whole.
[1] Allwein, E., R. Schapire, and Y. Singer. “Reducing multiclass to binary: A unifying approach for margin classifiers.” Journal of Machine Learning Research. Vol. 1, 2000, pp. 113–141.
[2] Escalera, S., O. Pujol, and P. Radeva. “On the decoding process in ternary error-correcting output codes.” IEEE Transactions on Pattern Analysis and Machine Intelligence. Vol. 32, Issue 7, 2010, pp. 120–134.
[3] Escalera, S., O. Pujol, and P. Radeva. “Separability of ternary codes for sparse designs of error-correcting output codes.” Pattern Recogn. Vol. 30, Issue 3, 2009, pp. 285–297.
You have a modified version of this example. Do you want to open this example with your edits?