Cross-validate support vector machine (SVM) classifier
returns a cross-validated (partitioned) support vector machine (SVM) classifier
(CVSVMModel
= crossval(SVMModel
)CVSVMModel
) from a trained SVM classifier
(SVMModel
). By default, crossval
uses 10-fold cross-validation on the training data to create
CVSVMModel
, a ClassificationPartitionedModel
classifier.
returns a partitioned SVM classifier with additional options specified by one or
more name-value pair arguments. For example, you can specify the number of folds or
holdout sample proportion.CVSVMModel
= crossval(SVMModel
,Name,Value
)
Assess the predictive performance of SVMModel
on cross-validated
data by using the “kfold” methods and properties of
CVSVMModel
, such as kfoldLoss
.
Instead of training an SVM classifier and then cross-validating it, you can create a
cross-validated classifier directly by using fitcsvm
and specifying any of these name-value pair arguments:
'CrossVal'
, 'CVPartition'
,
'Holdout'
, 'Leaveout'
, or
'KFold'
.
ClassificationPartitionedModel
| ClassificationSVM
| CompactClassificationSVM
| cvpartition
| fitcsvm