Table Data Tuning

Tune matrix or multi-dimensional table values

You can estimate matrix or multi-dimensional table values from measured data. You can also specify design requirements at the command line, and optimize the table values.

Functions

sdo.requirements.FunctionMatchingImpose function matching constraint on variable
sdo.requirements.MonotonicVariableImpose monotonic constraint on variable
sdo.requirements.PhasePlaneEllipseImpose elliptic bound on phase plane trajectory of two signals
sdo.requirements.PhasePlaneRegionImpose region bound on phase plane trajectory of two signals
sdo.requirements.RelationalConstraintImpose relational constraint on pair of variables
sdo.requirements.SmoothnessConstraintImpose bounds on gradient magnitude of variable

Topics

How to Estimate Lookup Table Values

Estimating lookup table values is an example of estimating parameters which are matrices or multi-dimensional arrays.

Estimate Lookup Table Values from Data

This example shows how to estimate lookup table values from time-domain input-output (I/O) data in the Parameter Estimator.

Estimate Constrained Values of a Lookup Table

This example shows how to estimate constrained values of a lookup table in the Parameter Estimator.

Design Optimization Using Lookup Table Requirements for Gain Scheduling (Code)

Impose design requirements on the parameters in a lookup table and then tune the parameters.

Design Optimization Using Lookup Table Requirements for Gain Scheduling (GUI)

Impose design requirements on the parameters in a lookup table in the Response Optimizer, and tune the parameters.