Modal parameters from frequency-response functions
[___] = modalfit(
estimates the modal parameters of the identified model sys
,f
,mnum
,Name,Value
)sys
. Use
estimation commands like ssest
(System Identification Toolbox) or tfest
(System Identification Toolbox) to create sys
starting from a measured
frequency-response function or from time-domain input and output signals. This syntax
allows use of the 'DriveIndex'
,
'FreqRange'
, and 'PhysFreq'
name-value pair
arguments. It typically requires less data than syntaxes that use nonparametric
methods. You must have a System Identification Toolbox™ license to use this syntax.
Estimate the frequency-response function for a simple single-input/single-output system and compare it to the definition.
A one-dimensional discrete-time oscillating system consists of a unit mass, , attached to a wall by a spring with elastic constant . A sensor samples the displacement of the mass at Hz. A damper impedes the motion of the mass by exerting on it a force proportional to speed, with damping constant .
Generate 3000 time samples. Define the sampling interval .
Fs = 1; dt = 1/Fs; N = 3000; t = dt*(0:N-1); b = 0.01;
The system can be described by the state-space model
where is the state vector, and are respectively the displacement and velocity of the mass, is the driving force, and is the measured output. The state-space matrices are
is the identity, and the continuous-time state-space matrices are
Ac = [0 1;-1 -b]; A = expm(Ac*dt); Bc = [0;1]; B = Ac\(A-eye(2))*Bc; C = [1 0]; D = 0;
The mass is driven by random input for the first 2000 seconds and then left to return to rest. Use the state-space model to compute the time evolution of the system starting from an all-zero initial state. Plot the displacement of the mass as a function of time.
rng default u = randn(1,N)/2; u(2001:end) = 0; y = 0; x = [0;0]; for k = 1:N y(k) = C*x + D*u(k); x = A*x + B*u(k); end plot(t,y)
Estimate the modal frequency-response function of the system. Use a Hann window half as long as the measured signals. Specify that the output is the displacement of the mass.
wind = hann(N/2); [frf,f] = modalfrf(u',y',Fs,wind,'Sensor','dis');
The frequency-response function of a discrete-time system can be expressed as the Z-transform of the time-domain transfer function of the system, evaluated at the unit circle. Compare the modalfrf
estimate with the definition.
[b,a] = ss2tf(A,B,C,D); nfs = 2048; fz = 0:1/nfs:1/2-1/nfs; z = exp(2j*pi*fz); ztf = polyval(b,z)./polyval(a,z); plot(f,20*log10(abs(frf))) hold on plot(fz*Fs,20*log10(abs(ztf))) hold off grid ylim([-60 40])
Estimate the natural frequency and the damping ratio for the vibration mode.
[fn,dr] = modalfit(frf,f,Fs,1,'FitMethod','PP')
fn = 0.1593
dr = 0.0043
Compare the natural frequency to , which is the theoretical value for the undamped system.
theo = 1/(2*pi)
theo = 0.1592
Compute the modal parameters of a Space Station module starting from its frequency-response function (FRF) array.
Load a structure containing the three-input/three-output FRF array. The system is sampled at 320 Hz.
load modaldata SpaceStationFRF frf = SpaceStationFRF.FRF; f = SpaceStationFRF.f; fs = SpaceStationFRF.Fs;
Extract the modal parameters of the lowest 24 modes using the least-squares rational function method.
[fn,dr,ms,ofrf] = modalfit(frf,f,fs,24,'FitMethod','lsrf');
Compare the reconstructed FRF array to the measured one.
for ij = 1:3 for ji = 1:3 subplot(3,3,3*(ij-1)+ji) loglog(f,abs(frf(:,ji,ij))) hold on loglog(f,abs(ofrf(:,ji,ij))) hold off axis tight title(sprintf('In%d -> Out%d',ij,ji)) if ij==3 xlabel('Frequency (Hz)') end end end
Estimate the frequency-response function and modal parameters of a simple multi-input/multi-output system.
An ideal one-dimensional oscillating system consists of two masses, and , confined between two walls. The units are such that and . Each mass is attached to the nearest wall by a spring with an elastic constant . An identical spring connects the two masses. Three dampers impede the motion of the masses by exerting on them forces proportional to speed, with damping constant . Sensors sample and , the displacements of the masses, at Hz.
Generate 30,000 time samples, equivalent to 600 seconds. Define the sampling interval .
Fs = 50; dt = 1/Fs; N = 30000; t = dt*(0:N-1);
The system can be described by the state-space model
where is the state vector, and are respectively the location and the velocity of the th mass, is the vector of input driving forces, and is the output vector. The state-space matrices are
is the identity, and the continuous-time state-space matrices are
Set , , and .
k = 400; b = 0.1; m = 1/10; Ac = [0 1 0 0;-2*k -2*b k b;0 0 0 1;k/m b/m -2*k/m -2*b/m]; A = expm(Ac*dt); Bc = [0 0;1 0;0 0;0 1/m]; B = Ac\(A-eye(4))*Bc; C = [1 0 0 0;0 0 1 0]; D = zeros(2);
The masses are driven by random input throughout the measurement. Use the state-space model to compute the time evolution of the system starting from an all-zero initial state.
rng default u = randn(2,N); y = [0;0]; x = [0;0;0;0]; for kk = 1:N y(:,kk) = C*x + D*u(:,kk); x = A*x + B*u(:,kk); end
Use the input and output data to estimate the transfer function of the system as a function of frequency. Use a 15000-sample Hann window with 9000 samples of overlap between adjoining segments. Specify that the measured outputs are displacements.
wind = hann(15000); nove = 9000; [FRF,f] = modalfrf(u',y',Fs,wind,nove,'Sensor','dis');
Compute the theoretical transfer function as the Z-transform of the time-domain transfer function, evaluated at the unit circle.
nfs = 2048; fz = 0:1/nfs:1/2-1/nfs; z = exp(2j*pi*fz); [b1,a1] = ss2tf(A,B,C,D,1); [b2,a2] = ss2tf(A,B,C,D,2); frf(1,:,1) = polyval(b1(1,:),z)./polyval(a1,z); frf(1,:,2) = polyval(b1(2,:),z)./polyval(a1,z); frf(2,:,1) = polyval(b2(1,:),z)./polyval(a2,z); frf(2,:,2) = polyval(b2(2,:),z)./polyval(a2,z);
Plot the estimates and overlay the theoretical predictions.
for jk = 1:2 for kj = 1:2 subplot(2,2,2*(jk-1)+kj) plot(f,20*log10(abs(FRF(:,jk,kj)))) hold on plot(fz*Fs,20*log10(abs(frf(jk,:,kj)))) hold off axis([0 Fs/2 -100 0]) title(sprintf('Input %d, Output %d',jk,kj)) end end
Plot the estimates by using the syntax of modalfrf
with no output arguments.
figure modalfrf(u',y',Fs,wind,nove,'Sensor','dis')
Estimate the natural frequencies, damping ratios, and mode shapes of the system. Use the peak-picking method for the calculation.
[fn,dr,ms] = modalfit(FRF,f,Fs,2,'FitMethod','pp'); fn
fn = fn(:,:,1) = 3.8466 3.8466 3.8495 3.8495 fn(:,:,2) = 3.8492 3.8490 3.8552 14.4684
Compare the natural frequencies to the theoretical predictions for the undamped system.
undamped = sqrt(eig([2*k -k;-k/m 2*k/m]))/2/pi
undamped = 2×1
3.8470
14.4259
Compute the natural frequencies, the damping ratios, and the mode shapes for a two-input/three-output system excited by several bursts of random noise. Each burst lasts for 1 second, and there are 2 seconds between the end of each burst and the start of the next. The data are sampled at 4 kHz.
Load the data file. Plot the input signals and the output signals.
load modaldata subplot(2,1,1) plot(Xburst) title('Input Signals') subplot(2,1,2) plot(Yburst) title('Output Signals')
Compute the frequency-response functions. Specify a rectangular window with length equal to the burst period and no overlap between adjoining segments.
burstLen = 12000; [frf,f] = modalfrf(Xburst,Yburst,fs,burstLen);
Visualize a stabilization diagram and return the stable natural frequencies. Specify a maximum model order of 30 modes.
figure
modalsd(frf,f,fs,'MaxModes',30);
Zoom in on the plot. The averaged response function has maxima at 373 Hz, 852 Hz, and 1371 Hz, which correspond to the physical frequencies of the system. Save the maxima to a variable.
phfr = [373 852 1371];
Compute the modal parameters using the least-squares complex exponential (LSCE) algorithm. Specify a model order of 6 modes and specify physical frequencies for the 3 modes determined from the stabilization diagram. The function generates one set of natural frequencies and damping ratios for each input reference.
[fn,dr,ms,ofrf] = modalfit(frf,f,fs,6,'PhysFreq',phfr);
Plot the reconstructed frequency-response functions and compare them to the original ones.
for k = 1:2 for m = 1:3 subplot(2,3,m+3*(k-1)) plot(f/1000,10*log10(abs(frf(:,m,k)))) hold on plot(f/1000,10*log10(abs(ofrf(:,m,k)))) hold off text(1,-50,[['Output ';' Input '] num2str([m k]')]) ylim([-100 -40]) end end subplot(2,3,2) title('Frequency-Response Functions')
frf
— Frequency-response functionsFrequency-response functions, specified as a vector, matrix,
or 3-D array. frf
has size p-by-m-by-n,
where p is the number of frequency bins, m is
the number of response signals, and n is the number
of excitation signals used to estimate the transfer function.
Example: tfestimate(randn(1,1000),sin(2*pi*(1:1000)/4)+randn(1,1000)/10)
approximates
the frequency response of an oscillator.
Data Types: single
| double
Complex Number Support: Yes
f
— FrequenciesFrequencies, specified as a vector. The number of elements of f
must
equal the number of rows of frf
.
Data Types: single
| double
fs
— Sample rate of measurement dataSample rate of measurement data, specified as a positive scalar expressed in hertz.
Data Types: single
| double
mnum
— Number of modesNumber of modes, specified as a positive integer.
Data Types: single
| double
sys
— Identified systemIdentified system, specified as a model with identified parameters. Use
estimation commands like ssest
(System Identification Toolbox), n4sid
(System Identification Toolbox), or tfest
(System Identification Toolbox) to create
sys
starting from a measured frequency-response function
or from time-domain input and output signals. See Modal Analysis of Identified Models for an
example. You must have a System Identification Toolbox license to use this input argument.
Example: idss([0.5418 0.8373;-0.8373 0.5334],[0.4852;0.8373],[1
0],0,[0;0],[0;0],1)
generates an identified state-space model
corresponding to a unit mass attached to a wall by a spring of unit elastic
constant and a damper with constant 0.01. The displacement of the mass is sampled
at 1 Hz.
Example: idtf([0 0.4582 0.4566],[1 -1.0752 0.99],1)
generates
an identified transfer-function model corresponding to a unit mass attached to a
wall by a spring of unit elastic constant and a damper with constant 0.01. The
displacement of the mass is sampled at 1 Hz.
Specify optional
comma-separated pairs of Name,Value
arguments. Name
is
the argument name and Value
is the corresponding value.
Name
must appear inside quotes. You can specify several name and value
pair arguments in any order as
Name1,Value1,...,NameN,ValueN
.
'FitMethod','pp','FreqRange',[0 500]
uses
the peak-picking method to perform the fit and restricts the frequency
range to between 0 and 500 Hz.'Feedthrough'
— Presence of feedthrough in estimated transfer functionfalse
(default) | true
Presence of feedthrough in estimated transfer function, specified as the
comma-separated pair consisting of 'Feedthrough'
and a
logical value. This argument is available only if
'FitMethod'
is specified as
'lsrf'
.
Data Types: logical
'FitMethod'
— Fitting algorithm'lsce'
(default) | 'lsrf'
| 'pp'
Fitting algorithm, specified as the comma-separated pair consisting of
'FitMethod'
and 'lsce'
,
'lsrf'
, or 'pp'
.
'lsce'
— Least-Squares Complex Exponential Method. If you specify 'lsce'
,
then fn
is a vector with
mnum
elements, independent of the size of
frf
.
'lsrf'
— Least-squares rational function
estimation method. If you specify 'lsrf'
, then
fn
is a vector with mnum
elements, independent of the size of frf
. The
method is described in [3].
See Continuous-Time Transfer Function Estimation Using Continuous-Time Frequency-Domain Data (System Identification Toolbox) for more information. This
algorithm typically requires less data than nonparametric approaches
and is the only one that works for nonuniform
f
.
'pp'
— Peak-Picking Method. For an frf
computed
from n excitation signals and m
response signals, fn
is an
mnum
-by-m-by-n
array with one estimate of fn
and one estimate of
dr
per frf
.
'FreqRange'
— Frequency rangeFrequency range, specified as the comma-separated pair consisting of
'FreqRange'
and a two-element vector of increasing
positive values contained within the range specified in
f
.
Data Types: single
| double
'PhysFreq'
— Natural frequencies for physical modesNatural frequencies for physical modes to include in the analysis,
specified as the comma-separated pair consisting of 'PhysFreq'
and
a vector of frequency values within the range spanned by f
.
The function includes in the analysis those modes with natural frequencies
closest to the values specified in the vector. If the vector contains m frequency
values, then fn
and dr
have m rows
each, and ms
has m columns.
If you do not specify this argument, then the function uses the entire
frequency range in f
.
Data Types: single
| double
'DriveIndex'
— Indices of the driving-point frequency-response function[1 1]
(default) | two-element vector of positive integersIndices of the driving-point frequency-response function, specified
as the comma-separated pair consisting of 'DriveIndex'
and
a two-element vector of positive integers. The first element of the
vector must be less than or equal to the number of system responses.
The second element of the vector must be less than or equal to the
number of system excitations. Mode shapes are normalized to unity
modal based on the driving point.
Example: 'DriveIndex',[2 3]
specifies that
the driving-point frequency-response function is frf(:,2,3)
.
Data Types: single
| double
fn
— Natural frequenciesNatural frequencies, returned as a matrix or 3-D array. The size of fn
depends on the choice of fitting algorithm specified with
'
FitMethod
'
:
If you specify 'lsce'
or 'lsrf'
,
then fn
is a vector with mnum
elements, independent of the size of frf
. If the
system has more than mnum
oscillatory modes, then
the 'lsrf'
method returns the first
mnum
least-damped modes sorted in order of
increasing natural frequency.
If you specify 'pp'
, then fn
is an array of size
mnum
-by-m-by-n
with one estimate of fn
and one estimate of
dr
per frf
.
dr
— Damping ratiosDamping ratios for the natural frequencies in fn
,
returned as a matrix or 3-D array of the same size as fn
.
ms
— Mode-shape vectorsMode-shape vectors, returned as a matrix. ms
has mnum
columns,
each containing a mode-shape vector of length q,
where q is the larger of the number of excitation
channels and the number of response channels.
ofrf
— Reconstructed frequency-response functionsReconstructed frequency-response functions, returned as a vector,
matrix, or 3-D array with the same size as frf
.
The least-squares complex exponential method computes the impulse response corresponding to each frequency-response function and fits to the response a set of complex damped sinusoids using Prony’s method.
A sampled damped sinusoid can be cast in the form
where:
fs is the sample rate.
fi is the sinusoid frequency.
bi is the damping coefficient.
Ai and ϕi are the amplitude and phase of the sinusoid.
The ai are called amplitudes and the xi are called poles. Prony’s method expresses a sampled function h(n) as a superposition of N/2 modes (and thus N amplitudes and poles):
The poles are the roots of a polynomial with coefficients c0, c1, …, cN–1:
The coefficients are found using an autoregressive model of L = 2N samples of h:
To find the poles, the algorithm uses the roots
function. Once the poles are known, it is possible to determine the
frequencies and damping factors by identifying the imaginary and real parts of the pole
logarithms. The final step is solving for the amplitudes and reconstructing the impulse
response using
The following naive MATLAB® implementation summarizes the procedure:
N = 4; L = 2*N; h = rand(L,1); c = hankel(h(1:N),h(L-N:L-1))\-h(N+1:L); x = roots([1;c(N:-1:1)]).'; p = log(x); hrec = x.^((0:L-1)')*(x.^((0:L-1)')\h(1:L)); sum(h-hrec)
ans = 3.2613e-15 - 1.9297e-16i
The peak-picking method assumes that each significant peak in the frequency-response function corresponds to exactly one natural mode. Close to a peak, the system is assumed to behave like a one-degree-of-freedom damped harmonic oscillator:
where H is the frequency-response function, fr is the undamped resonance frequency, ζr = b/(4mk)1/2 is the relative damping, b is the damping constant, k is the elastic constant, and m is the mass.
Given a peak located at fp, the procedure takes the peak and a fixed number of points to either side, replaces the mass term with a dummy variable, d, and computes the modal parameters by solving the system of equations
[1] Allemang, Randall J., and David L. Brown. “Experimental Modal Analysis and Dynamic Component Synthesis, Vol. III: Modal Parameter Estimation.” Technical Report AFWAL-TR-87-3069. Air Force Wright Aeronautical Laboratories, Wright-Patterson Air Force Base, OH, December 1987.
[2] Brandt, Anders. Noise and Vibration Analysis: Signal Analysis and Experimental Procedures. Chichester, UK: John Wiley & Sons, 2011.
[3] Ozdemir, Ahmet Arda, and Suat Gumussoy. "Transfer Function Estimation in System Identification Toolbox via Vector Fitting." Proceedings of the 20th World Congress of the International Federation of Automatic Control, Toulouse, France, July 2017.
modalfrf
| modalsd
| tfestimate
| n4sid
(System Identification Toolbox) | tfest
(System Identification Toolbox)
You have a modified version of this example. Do you want to open this example with your edits?