optimoptions

Create optimization options

Description

example

options = optimoptions(SolverName) returns a set of default options for the SolverName solver.

example

options = optimoptions(SolverName,Name,Value) returns options with the named parameters altered with the specified values.

example

options = optimoptions(oldoptions,Name,Value) returns a copy of oldoptions with the named parameters altered with the specified values.

example

options = optimoptions(SolverName,oldoptions) returns default options for the SolverName solver, and copies the applicable options in oldoptions to options.

example

options = optimoptions(prob) returns a set of default options for the prob optimization problem or equation problem.

options = optimoptions(prob,Name,Value) returns options with the named parameters altered with the specified values.

Examples

collapse all

Create default options for the fmincon solver.

options = optimoptions('fmincon')
options = 
  fmincon options:

   Options used by current Algorithm ('interior-point'):
   (Other available algorithms: 'active-set', 'sqp', 'sqp-legacy', 'trust-region-reflective')

   Set properties:
     No options set.

   Default properties:
                    Algorithm: 'interior-point'
               CheckGradients: 0
          ConstraintTolerance: 1.0000e-06
                      Display: 'final'
     FiniteDifferenceStepSize: 'sqrt(eps)'
         FiniteDifferenceType: 'forward'
         HessianApproximation: 'bfgs'
                   HessianFcn: []
           HessianMultiplyFcn: []
                  HonorBounds: 1
       MaxFunctionEvaluations: 3000
                MaxIterations: 1000
               ObjectiveLimit: -1.0000e+20
          OptimalityTolerance: 1.0000e-06
                    OutputFcn: []
                      PlotFcn: []
                 ScaleProblem: 0
    SpecifyConstraintGradient: 0
     SpecifyObjectiveGradient: 0
                StepTolerance: 1.0000e-10
          SubproblemAlgorithm: 'factorization'
                     TypicalX: 'ones(numberOfVariables,1)'
                  UseParallel: 0

   Show options not used by current Algorithm ('interior-point')

Create nondefault options for the fmincon solver.

options = optimoptions(@fmincon,'Algorithm','sqp','MaxIterations',1500)
options = 
  fmincon options:

   Options used by current Algorithm ('sqp'):
   (Other available algorithms: 'active-set', 'interior-point', 'sqp-legacy', 'trust-region-reflective')

   Set properties:
                    Algorithm: 'sqp'
                MaxIterations: 1500

   Default properties:
               CheckGradients: 0
          ConstraintTolerance: 1.0000e-06
                      Display: 'final'
     FiniteDifferenceStepSize: 'sqrt(eps)'
         FiniteDifferenceType: 'forward'
       MaxFunctionEvaluations: '100*numberOfVariables'
               ObjectiveLimit: -1.0000e+20
          OptimalityTolerance: 1.0000e-06
                    OutputFcn: []
                      PlotFcn: []
                 ScaleProblem: 0
    SpecifyConstraintGradient: 0
     SpecifyObjectiveGradient: 0
                StepTolerance: 1.0000e-06
                     TypicalX: 'ones(numberOfVariables,1)'
                  UseParallel: 0

   Show options not used by current Algorithm ('sqp')

Update existing options with new values.

Create options for the lsqnonlin solver.

oldoptions = optimoptions(@lsqnonlin,'Algorithm','levenberg-marquardt',...
    'MaxFunctionEvaluations',1500)
oldoptions = 
  lsqnonlin options:

   Options used by current Algorithm ('levenberg-marquardt'):
   (Other available algorithms: 'trust-region-reflective')

   Set properties:
                   Algorithm: 'levenberg-marquardt'
      MaxFunctionEvaluations: 1500

   Default properties:
              CheckGradients: 0
                     Display: 'final'
    FiniteDifferenceStepSize: 'sqrt(eps)'
        FiniteDifferenceType: 'forward'
           FunctionTolerance: 1.0000e-06
               MaxIterations: 400
                   OutputFcn: []
                     PlotFcn: []
    SpecifyObjectiveGradient: 0
               StepTolerance: 1.0000e-06
                    TypicalX: 'ones(numberOfVariables,1)'
                 UseParallel: 0

   Show options not used by current Algorithm ('levenberg-marquardt')

Increase MaxFunctionEvaluations to 2000.

options = optimoptions(oldoptions,'MaxFunctionEvaluations',2000)
options = 
  lsqnonlin options:

   Options used by current Algorithm ('levenberg-marquardt'):
   (Other available algorithms: 'trust-region-reflective')

   Set properties:
                   Algorithm: 'levenberg-marquardt'
      MaxFunctionEvaluations: 2000

   Default properties:
              CheckGradients: 0
                     Display: 'final'
    FiniteDifferenceStepSize: 'sqrt(eps)'
        FiniteDifferenceType: 'forward'
           FunctionTolerance: 1.0000e-06
               MaxIterations: 400
                   OutputFcn: []
                     PlotFcn: []
    SpecifyObjectiveGradient: 0
               StepTolerance: 1.0000e-06
                    TypicalX: 'ones(numberOfVariables,1)'
                 UseParallel: 0

   Show options not used by current Algorithm ('levenberg-marquardt')

Update existing options with new values by using dot notation.

Create options for the lsqnonlin solver.

options = optimoptions(@lsqnonlin,'Algorithm','levenberg-marquardt',...
    'MaxFunctionEvaluations',1500)
options = 
  lsqnonlin options:

   Options used by current Algorithm ('levenberg-marquardt'):
   (Other available algorithms: 'trust-region-reflective')

   Set properties:
                   Algorithm: 'levenberg-marquardt'
      MaxFunctionEvaluations: 1500

   Default properties:
              CheckGradients: 0
                     Display: 'final'
    FiniteDifferenceStepSize: 'sqrt(eps)'
        FiniteDifferenceType: 'forward'
           FunctionTolerance: 1.0000e-06
               MaxIterations: 400
                   OutputFcn: []
                     PlotFcn: []
    SpecifyObjectiveGradient: 0
               StepTolerance: 1.0000e-06
                    TypicalX: 'ones(numberOfVariables,1)'
                 UseParallel: 0

   Show options not used by current Algorithm ('levenberg-marquardt')

Increase MaxFunctionEvaluations to 2000 by using dot notation.

options.MaxFunctionEvaluations = 2000
options = 
  lsqnonlin options:

   Options used by current Algorithm ('levenberg-marquardt'):
   (Other available algorithms: 'trust-region-reflective')

   Set properties:
                   Algorithm: 'levenberg-marquardt'
      MaxFunctionEvaluations: 2000

   Default properties:
              CheckGradients: 0
                     Display: 'final'
    FiniteDifferenceStepSize: 'sqrt(eps)'
        FiniteDifferenceType: 'forward'
           FunctionTolerance: 1.0000e-06
               MaxIterations: 400
                   OutputFcn: []
                     PlotFcn: []
    SpecifyObjectiveGradient: 0
               StepTolerance: 1.0000e-06
                    TypicalX: 'ones(numberOfVariables,1)'
                 UseParallel: 0

   Show options not used by current Algorithm ('levenberg-marquardt')

Transfer nondefault options for the fmincon solver to options for the fminunc solver.

Create nondefault options for the fmincon solver.

oldoptions = optimoptions(@fmincon,'Algorithm','sqp','MaxIterations',1500)
oldoptions = 
  fmincon options:

   Options used by current Algorithm ('sqp'):
   (Other available algorithms: 'active-set', 'interior-point', 'sqp-legacy', 'trust-region-reflective')

   Set properties:
                    Algorithm: 'sqp'
                MaxIterations: 1500

   Default properties:
               CheckGradients: 0
          ConstraintTolerance: 1.0000e-06
                      Display: 'final'
     FiniteDifferenceStepSize: 'sqrt(eps)'
         FiniteDifferenceType: 'forward'
       MaxFunctionEvaluations: '100*numberOfVariables'
               ObjectiveLimit: -1.0000e+20
          OptimalityTolerance: 1.0000e-06
                    OutputFcn: []
                      PlotFcn: []
                 ScaleProblem: 0
    SpecifyConstraintGradient: 0
     SpecifyObjectiveGradient: 0
                StepTolerance: 1.0000e-06
                     TypicalX: 'ones(numberOfVariables,1)'
                  UseParallel: 0

   Show options not used by current Algorithm ('sqp')

Transfer the applicable options to the fminunc solver.

options = optimoptions(@fminunc,oldoptions)
options = 
  fminunc options:

   Options used by current Algorithm ('quasi-newton'):
   (Other available algorithms: 'trust-region')

   Set properties:
              CheckGradients: 0
        FiniteDifferenceType: 'forward'
               MaxIterations: 1500
         OptimalityTolerance: 1.0000e-06
                     PlotFcn: []
    SpecifyObjectiveGradient: 0
               StepTolerance: 1.0000e-06

   Default properties:
                   Algorithm: 'quasi-newton'
                     Display: 'final'
    FiniteDifferenceStepSize: 'sqrt(eps)'
      MaxFunctionEvaluations: '100*numberOfVariables'
              ObjectiveLimit: -1.0000e+20
                   OutputFcn: []
                    TypicalX: 'ones(numberOfVariables,1)'
                 UseParallel: 0

   Show options not used by current Algorithm ('quasi-newton')

Create an optimization problem and find the default solver and options.

rng default
x = optimvar('x',3,'LowerBound',0);
expr = x'*(eye(3) + randn(3))*x - randn(1,3)*x;
prob = optimproblem('Objective',expr);
options = optimoptions(prob)
options = 
  quadprog options:

   Options used by current Algorithm ('interior-point-convex'):
   (Other available algorithms: 'active-set', 'trust-region-reflective')

   Set properties:
     No options set.

   Default properties:
              Algorithm: 'interior-point-convex'
    ConstraintTolerance: 1.0000e-08
                Display: 'final'
           LinearSolver: 'auto'
          MaxIterations: 200
    OptimalityTolerance: 1.0000e-08
          StepTolerance: 1.0000e-12

   Show options not used by current Algorithm ('interior-point-convex')

The default solver is quadprog.

Set the options to use iterative display. Find the solution.

options.Display = 'iter';
sol = solve(prob,'Options',options);
Solving problem using quadprog.
Your Hessian is not symmetric. Resetting H=(H+H')/2.

 Iter            Fval  Primal Infeas    Dual Infeas  Complementarity  
    0    2.018911e+00   0.000000e+00   2.757660e+00     6.535839e-01  
    1   -2.170204e+00   0.000000e+00   8.881784e-16     2.586177e-01  
    2   -3.405808e+00   0.000000e+00   8.881784e-16     2.244054e-03  
    3   -3.438788e+00   0.000000e+00   3.356690e-16     7.261144e-09  

Minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in 
feasible directions, to within the value of the optimality tolerance,
and constraints are satisfied to within the value of the constraint tolerance.
sol.x
ans = 3×1

    1.6035
    0.0000
    0.8029

Input Arguments

collapse all

Solver name, specified as a character vector, string, or function handle.

Example: 'fmincon'

Example: @fmincon

Data Types: char | function_handle | string

Options, specified as an options object. The optimoptions function creates options objects.

Example: oldoptions = optimoptions(@fminunc)

Problem object, specified as an OptimizationProblem object or an EquationProblem object. Create prob using the Problem-Based Optimization Workflow or Problem-Based Workflow for Solving Equations.

The syntaxes using prob enable you to see what the default solver is for your problem and to modify the algorithm or other options.

Example: prob = optimproblem('Objective',myobj), where myobjis an optimization expression

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Example: optimoptions(@fmincon,'Display','iter','FunctionTolerance',1e-10) sets fmincon options to have iterative display, and to have a FunctionTolerance of 1e-10.

For relevant name-value pairs, consult the options table for your solver:

  • fgoalattain options

  • fmincon options

  • fminimax options

  • fminunc options

  • fseminf options

  • fsolve options

  • ga options (Global Optimization Toolbox) (in Global Optimization Toolbox)

  • gamultiobj options (Global Optimization Toolbox) (in Global Optimization Toolbox)

  • intlinprog options

  • linprog options

  • lsqcurvefit options

  • lsqlin options

  • lsqnonlin options

  • paretosearch options (Global Optimization Toolbox) (in Global Optimization Toolbox)

  • particleswarm options (Global Optimization Toolbox) (in Global Optimization Toolbox)

  • patternsearch options (Global Optimization Toolbox) (in Global Optimization Toolbox)

  • quadprog options

  • simulannealbnd options (Global Optimization Toolbox) (in Global Optimization Toolbox)

  • surrogateopt options (Global Optimization Toolbox) (in Global Optimization Toolbox)

Output Arguments

collapse all

Options object, returned as the options for the SolverName solver.

Alternative Functionality

Live Editor Task

The Optimize Live Editor task lets you set options visually. For an example, see Optimize Live Editor Task with fmincon Solver.

Extended Capabilities

Introduced in R2013a