Once you have created a model predictive controller for your plant, you can tune the system closed-loop response using the MPC Designer app or at the command line.
MPC Designer | Design and simulate model predictive controllers |
Setting Targets for Manipulated Variables
If your plant has more manipulated variables than outputs, you can hold the excess manipulated variables at target values for economical or operational reasons.
Time-Varying Weights and Constraints
When designing an MPC controller, you can specify tuning weights and constraints that vary over the prediction horizon.
Constraints on Linear Combinations of Inputs and Outputs
You can design and simulate a model predictive controller with mixed input/output constraints.
Terminal Weights and Constraints
To achieve infinite horizon control, you can use terminal weights at the final prediction horizon step. To ensure stability for constrained systems, you may have to also define terminal constraints at the end of the prediction horizon.
Adjust Disturbance and Noise Models
MPC controllers model unknown events using input and output disturbance models, and measurement noise models.
You can override the default MPC controller state estimation method by changing the default Kalman gains or by supplying your own controller state estimates.
You can improve the robustness of your controller and smooth manipulated variable adjustments by dividing the prediction horizon into a series of blocking intervals.
Specifying Alternative Cost Function with Off-Diagonal Weight Matrices
You can specify an alternative cost function for your model predictive controller to minimize during optimization.