Control linear gauge appearance and behavior
A linear gauge is a UI component that represents a measurement instrument. Properties control the appearance and behavior of a linear gauge. Use dot notation to refer to a specific object and property.
fig = uifigure; g = uigauge(fig,'linear'); g.Value = 45;
Value
— Location of gauge needleLocation of the gauge needle, specified as any numeric value.
If the value is less than the minimum Limits
property
value, then the needle points to a location immediately before the
beginning of the scale.
If the value is more than the maximum Limits
property
value, then the needle points to a location immediately after the
end of the scale.
Changing the Limits
property value has
no effect on the Value
property setting.
Example: 60
Limits
— Minimum and maximum gauge scale valuesMinimum and maximum gauge scale values, specified as a two-element numeric array. The first value in the array must be less than the second value.
If you change Limits
such that the Value
property
is less than the new lower limit, or more than the new upper limit,
then the gauge needle points to a location off the scale.
For example, suppose Limits
is [0
100]
and the Value
property is 20.
If the Limits
changes to [50 100]
,
then the needle points to a location off the scale, slightly less
than 50.
Orientation
— Orientation'horizontal'
(default) | 'vertical'
Orientation of the gauge, specified as 'horizontal'
or
'vertical'
.
ScaleColors
— Scale colorsn
string array | 1-by-n
cell array |
n
-by-3 array of RGB triplets | hexadecimal color code | ...Scale colors, specified as one of the following arrays:
A 1-by-n
string array of color options, such as
["blue" "green" "red"]
.
An n
-by-3 array of RGB triplets, such as [0 0
1;1 1 0]
.
A 1-by-n
cell array containing RGB triplets,
hexadecimal color codes, or named color options. For example,
{'#EDB120','#7E2F8E','#77AC30'}
.
RGB triplets and hexadecimal color codes are useful for specifying custom colors.
An RGB triplet is a three-element row vector whose elements specify the
intensities of the red, green, and blue components of the color. The intensities
must be in the range [0,1]
; for example, [0.4 0.6
0.7]
.
A hexadecimal color code is a character vector or a string scalar that starts
with a hash symbol (#
) followed by three or six hexadecimal
digits, which can range from 0
to F
. The
values are not case sensitive. Thus, the color codes
'#FF8800'
, '#ff8800'
,
'#F80'
, and '#f80'
are
equivalent.
Alternatively, you can specify some common colors by name. This table lists the named color options, the equivalent RGB triplets, and hexadecimal color codes.
Color Name | Short Name | RGB Triplet | Hexadecimal Color Code | Appearance |
---|---|---|---|---|
'red' | 'r' | [1 0 0] | '#FF0000' | |
'green' | 'g' | [0 1 0] | '#00FF00' | |
'blue' | 'b' | [0 0 1] | '#0000FF' | |
'cyan' | 'c' | [0 1 1] | '#00FFFF' | |
'magenta' | 'm' | [1 0 1] | '#FF00FF' | |
'yellow' | 'y' | [1 1 0] | '#FFFF00' | |
'black' | 'k' | [0 0 0] | '#000000' | |
'white' | 'w' | [1 1 1] | '#FFFFFF' |
Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB® uses in many types of plots.
RGB Triplet | Hexadecimal Color Code | Appearance |
---|---|---|
[0 0.4470 0.7410] | '#0072BD' | |
[0.8500 0.3250 0.0980] | '#D95319' | |
[0.9290 0.6940 0.1250] | '#EDB120' | |
[0.4940 0.1840 0.5560] | '#7E2F8E' | |
[0.4660 0.6740 0.1880] | '#77AC30' | |
[0.3010 0.7450 0.9330] | '#4DBEEE' | |
[0.6350 0.0780 0.1840] | '#A2142F' |
Each color of the ScaleColors
array corresponds to a colored
section of the gauge. Set the ScaleColorLimits
property to map the
colors to specific sections of the gauge.
If you do not set the ScaleColorLimits
property, MATLAB distributes the colors equally over the range of the gauge.
ScaleColorLimits
— Scale color limitsScale color limits, specified as a n-by-2 array of numeric values. For every row in the array, the first element must be less than the second element.
When applying colors to the gauge, MATLAB applies the colors starting with the first color in the
ScaleColors
array. Therefore, if two rows in
ScaleColorLimits
array overlap, then the color applied later
takes precedence.
The gauge does not display any portion of the ScaleColorLimits
that fall outside of the Limits
property.
If the ScaleColors
and ScaleColorLimits
property values are different sizes, then the gauge shows only the colors that have
matching limits. For example, if the ScaleColors
array has three
colors, but the ScaleColorLimits
has only two rows, then the gauge
displays the first two color/limit pairs only.
MajorTicks
— Major tick mark locations[0 20 40 60 80 100]
(default) | vector of numeric values | []
Major tick mark locations, specified as a vector of numeric values or an empty vector. If you do not want to show major tick marks, specify this property as an empty vector.
Tick locations that are outside the range of the Limits
property
do not display.
MATLAB removes duplicate tick values. However, if a major tick falls on the same value as a minor tick, only the major tick displays.
Setting the MajorTicks
property sets the
MajorTicksMode
property to 'manual'
.
MajorTicksMode
— Major tick creation mode'auto'
(default) | 'manual'
Major tick creation mode, specified as one of the following:
'auto'
— MATLAB determines
the placement of major ticks.
'manual'
— You specify the MajorTicks
value
array.
MajorTickLabels
— Major tick labels{'0','20','40','60','80','100'}
(default) | cell array of character vectors | string array | {}
| ...Major tick labels, specified as a cell array of character vectors, string array, or
1-D categorical array. If you do not want to show tick labels, specify this property as
an empty cell array. If you want to remove a label from a specific tick mark, specify an
empty character vector or empty string scalar for the corresponding element in the
MajorTickLabels
array. If you specify this property as a
categorical array, MATLAB uses the values in the array, not the full set of categories.
If the length of the MajorTickLabels
array is different from the
length of the MajorTicks
vector, MATLAB ignores the extra entries of the longer array. If there are extra labels,
they are ignored. If there are extra tick marks, they display without labels.
Setting MajorTickLabels
changes the
MajorTickLabelsMode
value to 'manual'
.
MajorTickLabelsMode
— Major tick labels mode'auto'
(default) | 'manual'
Major tick labels mode, specified as one of the following:
'auto'
— MATLAB specifies the major tick labels.
'manual'
— You specify the major tick labels
using the MajorTickLabels
property.
MinorTicks
— Minor tick mark locations[0 4 8 12 ... 100]
(default) | vector of numeric values | []
Minor tick mark locations, specified as a vector of numeric values or an empty vector. If you do not want to show minor tick marks, specify this property as an empty vector.
Tick locations that are outside the range of the Limits
property
do not display.
MATLAB removes duplicate tick values. However, if a minor tick falls on the same value as a major tick, only the major tick displays.
Setting the MinorTicks
property value sets the
MinorTicksMode
property value to 'manual'
.
MinorTicksMode
— Minor tick creation mode'auto'
(default) | 'manual'
Minor tick creation mode, specified as one of the following:
'auto'
— MATLAB determines the placement of minor ticks. MATLAB does not generate minor ticks for major ticks that are beyond
scale limits. If the Limits
property value changes,
then MATLAB updates minor ticks to populate the full scale range (the
MinorTicks
property is updated accordingly).
'manual'
— You specify the MinorTicks
property
numeric array. The MinorTicks
property value
does not change size or content on its own.
FontName
— Font nameFont name, specified as a system supported font name. The default font depends on the specific operating system and locale.
If the specified font is not available, then MATLAB uses the best match among the fonts available on the system where the app is running.
Example: 'Arial'
FontSize
— Font sizeFont size, specified as a positive number. The units of measurement are pixels. The default font size depends on the specific operating system and locale.
Example: 14
FontWeight
— Font weight'normal'
(default) | 'bold'
Font weight, specified as one of these values:
'normal'
— Default weight
as defined by the particular font
'bold'
— Thicker character
outlines than 'normal'
Not all fonts have a bold font weight. Therefore, specifying a bold font weight can result in the normal font weight.
FontAngle
— Font angle'normal'
(default) | 'italic'
Font angle, specified as 'normal'
or 'italic'
.
Setting this property to italic
selects a slanted version of the
font, if it is available on the app user’s system.
FontColor
— Font color[0 0 0]
(default) | RGB triplet | hexadecimal color code | 'r'
| 'g'
| 'b'
| ...Font color, specified as an RGB triplet, a hexadecimal color code, or one of the options listed in the table.
RGB triplets and hexadecimal color codes are useful for specifying custom colors.
An RGB triplet is a three-element row vector whose elements specify the
intensities of the red, green, and blue components of the color. The intensities
must be in the range [0,1]
; for example, [0.4 0.6
0.7]
.
A hexadecimal color code is a character vector or a string scalar that starts
with a hash symbol (#
) followed by three or six hexadecimal
digits, which can range from 0
to F
. The
values are not case sensitive. Thus, the color codes
'#FF8800'
, '#ff8800'
,
'#F80'
, and '#f80'
are
equivalent.
Alternatively, you can specify some common colors by name. This table lists the named color options, the equivalent RGB triplets, and hexadecimal color codes.
Color Name | Short Name | RGB Triplet | Hexadecimal Color Code | Appearance |
---|---|---|---|---|
'red' | 'r' | [1 0 0] | '#FF0000' | |
'green' | 'g' | [0 1 0] | '#00FF00' | |
'blue' | 'b' | [0 0 1] | '#0000FF' | |
'cyan' | 'c' | [0 1 1] | '#00FFFF' | |
'magenta' | 'm' | [1 0 1] | '#FF00FF' | |
'yellow' | 'y' | [1 1 0] | '#FFFF00' | |
'black' | 'k' | [0 0 0] | '#000000' | |
'white' | 'w' | [1 1 1] | '#FFFFFF' |
Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in many types of plots.
RGB Triplet | Hexadecimal Color Code | Appearance |
---|---|---|
[0 0.4470 0.7410] | '#0072BD' | |
[0.8500 0.3250 0.0980] | '#D95319' | |
[0.9290 0.6940 0.1250] | '#EDB120' | |
[0.4940 0.1840 0.5560] | '#7E2F8E' | |
[0.4660 0.6740 0.1880] | '#77AC30' | |
[0.3010 0.7450 0.9330] | '#4DBEEE' | |
[0.6350 0.0780 0.1840] | '#A2142F' |
BackgroundColor
— Background color[1 1 1]
(default) | RGB triplet | hexadecimal color code | 'r'
| 'g'
| 'b'
| ...Background color, specified as an RGB triplet, a hexadecimal color code, or one of the color options listed in the table.
RGB triplets and hexadecimal color codes are useful for specifying custom colors.
An RGB triplet is a three-element row vector whose elements specify the
intensities of the red, green, and blue components of the color. The intensities
must be in the range [0,1]
; for example, [0.4 0.6
0.7]
.
A hexadecimal color code is a character vector or a string scalar that starts
with a hash symbol (#
) followed by three or six hexadecimal
digits, which can range from 0
to F
. The
values are not case sensitive. Thus, the color codes
'#FF8800'
, '#ff8800'
,
'#F80'
, and '#f80'
are
equivalent.
Alternatively, you can specify some common colors by name. This table lists the named color options, the equivalent RGB triplets, and hexadecimal color codes.
Color Name | Short Name | RGB Triplet | Hexadecimal Color Code | Appearance |
---|---|---|---|---|
'red' | 'r' | [1 0 0] | '#FF0000' | |
'green' | 'g' | [0 1 0] | '#00FF00' | |
'blue' | 'b' | [0 0 1] | '#0000FF' | |
'cyan' | 'c' | [0 1 1] | '#00FFFF' | |
'magenta' | 'm' | [1 0 1] | '#FF00FF' | |
'yellow' | 'y' | [1 1 0] | '#FFFF00' | |
'black' | 'k' | [0 0 0] | '#000000' | |
'white' | 'w' | [1 1 1] | '#FFFFFF' |
Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in many types of plots.
RGB Triplet | Hexadecimal Color Code | Appearance |
---|---|---|
[0 0.4470 0.7410] | '#0072BD' | |
[0.8500 0.3250 0.0980] | '#D95319' | |
[0.9290 0.6940 0.1250] | '#EDB120' | |
[0.4940 0.1840 0.5560] | '#7E2F8E' | |
[0.4660 0.6740 0.1880] | '#77AC30' | |
[0.3010 0.7450 0.9330] | '#4DBEEE' | |
[0.6350 0.0780 0.1840] | '#A2142F' |
Visible
— State of visibility'on'
(default) | on/off logical valueState of visibility, specified as 'on'
or 'off'
,
or as numeric or logical 1
(true
) or
0
(false
). A value of 'on'
is equivalent to true
, and 'off'
is equivalent to
false
. Thus, you can use the value of this property as a logical
value. The value is stored as an on/off logical value of type matlab.lang.OnOffSwitchState
.
'on'
— Display the object.
'off'
— Hide the object without deleting it. You
still can access the properties of an invisible UI component.
To make your app start faster, set the Visible
property to
'off'
for all UI components that do not need to appear at
startup.
Enable
— Operational state of gauge'on'
(default) | on/off logical valueOperational state of gauge, specified as 'on'
or 'off'
,
or as numeric or logical 1
(true
) or
0
(false
). A value of 'on'
is equivalent to true
, and 'off'
is equivalent to
false
. Thus, you can use the value of this property as a logical
value. The value is stored as an on/off logical value of type matlab.lang.OnOffSwitchState
.
If you set this property to 'on'
,
then the appearance of the gauge indicates that the gauge is operational.
If you set this property to 'off'
,
then the appearance of the gauge appears dimmed, indicating that the
gauge is not operational.
Tooltip
— Tooltip''
(default) | character vector | cell array of character vectors | string array | 1-D categorical arrayTooltip, specified as a character vector, cell array of character vectors, string array, or 1-D categorical array. Use this property to display a message when the user hovers the pointer over the component at run time. The tooltip displays even when the component is disabled. To display multiple lines of text, specify a cell array of character vectors or a string array. Each element in the array becomes a separate line of text. If you specify this property as a categorical array, MATLAB uses the values in the array, not the full set of categories.
ContextMenu
— Context menuGraphicsPlaceholder
array (default) | ContextMenu
objectContext menu, specified as a ContextMenu
object created using the uicontextmenu
function. Use this property to display a context menu when
you right-click on a component.
Position
— Gauge location and size [100 100 120 40]
(default) | [left bottom width height]
Gauge location and size, specified as the vector, [left bottom
width height]
. This table describes each element in the
vector.
Element | Description |
---|---|
left | Distance from the inner left edge of the parent container to the outer left edge of the gauge |
bottom | Distance from the inner bottom edge of the parent container to the outer bottom edge of the gauge |
width | Distance between the right and left outer edges of the gauge |
height | Distance between the top and bottom outer edges of the gauge |
All measurements are in pixel units.
The Position
values are relative to the
drawable area of the parent container. The drawable area is the area
inside the borders of the container and does not include the area occupied by decorations such
as a menu bar or title.
Example: [100 100 100 20]
InnerPosition
— Inner location and size of gauge[100 100 120 40]
(default) | [left bottom width height]
Inner location and size of the gauge, specified as [left bottom
width height]
. Position values are relative to the parent
container. All measurements are in pixel units. This property value is
identical to the Position
property.
OuterPosition
— Outer location and size of gauge[100 100 120 40]]
(default) | [left bottom width height]
This property is read-only.
Outer location and size of the gauge, returned as [left bottom
width height]
. Position values are relative to the parent
container. All measurements are in pixel units. This property value is
identical to the Position
property.
Layout
— Layout optionsLayoutOptions
array (default) | GridLayoutOptions
objectLayout options, specified as a
GridLayoutOptions
object. This property specifies
options for components that are children of grid layout containers. If the
component is not a child of a grid layout container (for example, it is a
child of a figure or panel), then this property is empty and has no effect.
However, if the component is a child of a grid layout container, you can
place the component in the desired row and column of the grid by setting the
Row
and Column
properties on
the GridLayoutOptions
object.
For example, this code places a linear gauge in the third row and second column of its parent grid.
g = uigridlayout([4 3]);
gauge = uigauge(g,'linear');
gauge.Layout.Row = 3;
gauge.Layout.Column = 2;
To make the gauge span multiple rows or columns, specify the
Row
or Column
property as a
two-element vector. For example, this gauge spans columns
2
through
3
:
gauge.Layout.Column = [2 3];
CreateFcn
— Creation function''
(default) | function handle | cell array | character vectorObject creation function, specified as one of these values:
Function handle.
Cell array in which the first element is a function handle. Subsequent elements in the cell array are the arguments to pass to the callback function.
Character vector containing a valid MATLAB expression (not recommended). MATLAB evaluates this expression in the base workspace.
For more information about specifying a callback as a function handle, cell array, or character vector, see Write Callbacks in App Designer.
This property specifies a callback function to execute when MATLAB creates the object. MATLAB initializes all property values before executing the CreateFcn
callback. If you do not specify the CreateFcn
property, then MATLAB executes a default creation function.
Setting the CreateFcn
property on an existing component has no effect.
If you specify this property as a function handle or cell array, you can access the object that is being created using the first argument of the callback function. Otherwise, use the gcbo
function to access the object.
DeleteFcn
— Deletion function''
(default) | function handle | cell array | character vectorObject deletion function, specified as one of these values:
Function handle.
Cell array in which the first element is a function handle. Subsequent elements in the cell array are the arguments to pass to the callback function.
Character vector containing a valid MATLAB expression (not recommended). MATLAB evaluates this expression in the base workspace.
For more information about specifying a callback as a function handle, cell array, or character vector, see Write Callbacks in App Designer.
This property specifies a callback function to execute when MATLAB deletes the object. MATLAB executes the DeleteFcn
callback before destroying the
properties of the object. If you do not specify the DeleteFcn
property, then MATLAB executes a default deletion function.
If you specify this property as a function handle or cell array, you can access the
object that is being deleted using the first argument of the callback function.
Otherwise, use the gcbo
function to access the
object.
Interruptible
— Callback interruption'on'
(default) | on/off logical valueCallback interruption, specified as 'on'
or 'off'
, or as
numeric or logical 1
(true
) or
0
(false
). A value of 'on'
is equivalent to true
, and 'off'
is equivalent to
false
. Thus, you can use the value of this property as a logical
value. The value is stored as an on/off logical value of type matlab.lang.OnOffSwitchState
.
This property determines if a running callback can be interrupted. There are two callback states to consider:
The running callback is the currently executing callback.
The interrupting callback is a callback that tries to interrupt the running callback.
Whenever MATLAB invokes a callback, that callback attempts to interrupt the running
callback (if one exists). The Interruptible
property of the object
owning the running callback determines if interruption is allowed.
A value of 'on'
allows other callbacks to interrupt the
object's callbacks. The interruption occurs at the next point where
MATLAB processes the queue, such as when there is a drawnow
, figure
, uifigure
, getframe
, waitfor
, or pause
command.
If the running callback contains one of those commands, then MATLAB stops the execution of the callback at that point and executes the interrupting callback. MATLAB resumes executing the running callback when the interrupting callback completes.
If the running callback does not contain one of those commands, then MATLAB finishes executing the callback without interruption.
A value of 'off'
blocks all interruption attempts. The
BusyAction
property of the object owning the
interrupting callback determines if the interrupting callback is discarded
or put into a queue.
Note
Callback interruption and execution behave differently in these situations:
If the interrupting callback is a DeleteFcn
, CloseRequestFcn
or SizeChangedFcn
callback, then the interruption occurs regardless of the Interruptible
property value.
If the running callback is currently executing the waitfor
function, then the interruption occurs regardless of the Interruptible
property value.
Timer
objects execute according to schedule regardless of the Interruptible
property value.
When an interruption occurs, MATLAB does not save the state of properties or the display. For example, the
object returned by the gca
or gcf
command might change when
another callback executes.
BusyAction
— Callback queuing'queue'
(default) | 'cancel'
Callback queuing, specified as 'queue'
or 'cancel'
. The BusyAction
property determines how MATLAB handles the execution of interrupting callbacks. There are two callback states to consider:
The running callback is the currently executing callback.
The interrupting callback is a callback that tries to interrupt the running callback.
Whenever MATLAB invokes a callback, that callback attempts to interrupt a running callback. The Interruptible
property of the object owning the running callback determines if interruption is permitted. If interruption is not permitted, then the BusyAction
property of the object owning the interrupting callback determines if it is discarded or put in the queue. These are possible values of the BusyAction
property:
'queue'
— Puts the interrupting callback in a queue to be processed after the running callback finishes execution.
'cancel'
— Does not execute the interrupting callback.
BeingDeleted
— Deletion statusThis property is read-only.
Deletion status, returned as an on/off logical value of type matlab.lang.OnOffSwitchState
.
MATLAB sets the BeingDeleted
property to
'on'
when the DeleteFcn
callback begins
execution. The BeingDeleted
property remains set to
'on'
until the component object no longer exists.
Check the value of the BeingDeleted
property to verify that the object is not about to be deleted before querying or modifying it.
Parent
— Parent containerFigure
object (default) | Panel
object | Tab
object | ButtonGroup
object | GridLayout
objectParent container, specified as a Figure
object
created using the uifigure
function, or one of its child
containers: Tab
, Panel
, ButtonGroup
, or GridLayout
. If no container is specified, MATLAB calls the uifigure
function to create a new Figure
object that serves as the parent container.
HandleVisibility
— Visibility of object handle'on'
(default) | 'callback'
| 'off'
Visibility of the object handle, specified as 'on'
, 'callback'
,
or 'off'
.
This property controls the visibility of the object in its parent's
list of children. When an object is not visible in its parent's list
of children, it is not returned by functions that obtain objects by
searching the object hierarchy or querying properties. These functions
include get
, findobj
, clf
,
and close
. Objects are valid
even if they are not visible. If you can access an object, you can
set and get its properties, and pass it to any function that operates
on objects.
HandleVisibility Value | Description |
---|---|
'on' | The object is always visible. |
'callback' | The object is visible from within callbacks or functions invoked by callbacks, but not from within functions invoked from the command line. This option blocks access to the object at the command-line, but allows callback functions to access it. |
'off' | The object is invisible at all times. This option is useful
for preventing unintended changes to the UI by another function. Set
the HandleVisibility to 'off' to
temporarily hide the object during the execution of that function.
|
Type
— Type of graphics object'uilineargauge'
This property is read-only.
Type of graphics object, returned as
'uilineargauge'
.
Tag
— Object identifier''
(default) | character vector | string scalarObject identifier, specified as a character vector or string scalar. You can specify a unique Tag
value to serve as an identifier for an object. When you need access to the object elsewhere in your code, you can use the findobj
function to search for the object based on the Tag
value.
UserData
— User data[]
(default) | arrayUser data, specified as any MATLAB array. For example, you can specify a scalar, vector, matrix, cell array, character array, table, or structure. Use this property to store arbitrary data on an object.
If you are working in App Designer, create public or private properties in the app to share data instead of using the UserData
property. For more information, see Share Data Within App Designer Apps.