Control label appearance
Labels are UI components that contain static text for labelling parts of an app. Properties control the appearance and behavior of a label. Use dot notation to refer to a specific object and property.
fig = uifigure; tlabel = uilabel(fig); tlabel.Text = 'Options';
Text
— Label text'Label'
(default) | character vector | cell array of character vectors | string scalar | string array | ...Label text, specified as a character vector, cell array of character vectors, string scalar, string array, or 1-D categorical array. Use a cell array of character vectors or a string array to specify multiple lines of text.
Alternatively, use the sprintf
function
to create formatted text containing line breaks and other special
characters.
text = sprintf('%s\n%s','Line 1','Line 2'); label = uilabel('Text',text,'Position',[100 100 100 32]);
If you specify text as a character vector without using sprintf
,
MATLAB® will not interpret control sequences such as \n
.
If you specify this property as a categorical array, MATLAB uses the values in the array, not the full set of categories.
Example: 'Threshold'
Example: {'Threshold' 'Value'}
HorizontalAlignment
— Horizontal alignment of text'left'
(default) | 'right'
| 'center'
Horizontal alignment of the text, specified as:
'right'
— Text aligns on the right
side of the area specified by the Position
property.
'left'
— Text aligns on the left
side of the area specified by the Position
property.
'center'
— Text centers horizontally
in the area specified by the Position
property.
Aligning label text is useful when the text spans multiple lines.
VerticalAlignment
— Vertical alignment of text'center'
(default) | 'top'
| 'bottom'
Vertical alignment of the text, specified as one of the following:
'center'
— Text centers vertically in
the area specified by the Position
property.
'top'
— Text aligns on the top of the
area specified by the Position
property.
'bottom'
— Text aligns on the bottom of
the area specified by the Position
property.
Aligning label text is useful when the text spans multiple lines.
WordWrap
— Word wrapping to fit component width'off'
(default) | on/off logical valueWord wrapping to fit component width, specified as 'off'
or 'on'
, or as numeric or logical 0
(false
) or 1
(true
). A value of 'off'
is equivalent to false
, and 'on'
is equivalent to true
. Thus, you can use the value of this property as a logical value. The value is stored as an on/off logical value of type matlab.lang.OnOffSwitchState
.
Use this property to prevent text from getting clipped horizontally when the width of the component is smaller than the text you want to display.
'off'
— Text does not wrap.
'on'
— Breaks text into new lines so that each line fits
within the width of the component and avoids breaking words when
possible.
Setting the WordWrap
property to 'on'
does not
prevent text from getting clipped vertically when the height of the component is too
small to display all the lines of text.
FontName
— Font nameFont name, specified as a system supported font name. The default font depends on the specific operating system and locale.
If the specified font is not available, then MATLAB uses the best match among the fonts available on the system where the app is running.
Example: 'Arial'
FontSize
— Font sizeFont size, specified as a positive number. The units of measurement are pixels. The default font size depends on the specific operating system and locale.
Example: 14
FontWeight
— Font weight'normal'
(default) | 'bold'
Font weight, specified as one of these values:
'normal'
— Default weight
as defined by the particular font
'bold'
— Thicker character
outlines than 'normal'
Not all fonts have a bold font weight. Therefore, specifying a bold font weight can result in the normal font weight.
FontAngle
— Font angle'normal'
(default) | 'italic'
Font angle, specified as 'normal'
or 'italic'
.
Setting this property to italic
selects a slanted version of the
font, if it is available on the app user’s system.
FontColor
— Font color[0 0 0]
(default) | RGB triplet | hexadecimal color code | 'r'
| 'g'
| 'b'
| ...Font color, specified as an RGB triplet, a hexadecimal color code, or one of the options listed in the table.
RGB triplets and hexadecimal color codes are useful for specifying custom colors.
An RGB triplet is a three-element row vector whose elements specify the
intensities of the red, green, and blue components of the color. The intensities
must be in the range [0,1]
; for example, [0.4 0.6
0.7]
.
A hexadecimal color code is a character vector or a string scalar that starts
with a hash symbol (#
) followed by three or six hexadecimal
digits, which can range from 0
to F
. The
values are not case sensitive. Thus, the color codes
'#FF8800'
, '#ff8800'
,
'#F80'
, and '#f80'
are
equivalent.
Alternatively, you can specify some common colors by name. This table lists the named color options, the equivalent RGB triplets, and hexadecimal color codes.
Color Name | Short Name | RGB Triplet | Hexadecimal Color Code | Appearance |
---|---|---|---|---|
'red' | 'r' | [1 0 0] | '#FF0000' | |
'green' | 'g' | [0 1 0] | '#00FF00' | |
'blue' | 'b' | [0 0 1] | '#0000FF' | |
'cyan' | 'c' | [0 1 1] | '#00FFFF' | |
'magenta' | 'm' | [1 0 1] | '#FF00FF' | |
'yellow' | 'y' | [1 1 0] | '#FFFF00' | |
'black' | 'k' | [0 0 0] | '#000000' | |
'white' | 'w' | [1 1 1] | '#FFFFFF' |
Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in many types of plots.
RGB Triplet | Hexadecimal Color Code | Appearance |
---|---|---|
[0 0.4470 0.7410] | '#0072BD' | |
[0.8500 0.3250 0.0980] | '#D95319' | |
[0.9290 0.6940 0.1250] | '#EDB120' | |
[0.4940 0.1840 0.5560] | '#7E2F8E' | |
[0.4660 0.6740 0.1880] | '#77AC30' | |
[0.3010 0.7450 0.9330] | '#4DBEEE' | |
[0.6350 0.0780 0.1840] | '#A2142F' |
BackgroundColor
— Background color'none'
(default) | RGB triplet | hexadecimal color code | 'r'
| 'g'
| 'b'
| ...Background color, specified as an RGB triplet, a hexadecimal color code, or one of the color options listed in the table.
For a custom color, specify an RGB triplet or a hexadecimal color code.
An RGB triplet is a three-element row vector whose elements
specify the intensities of the red, green, and blue
components of the color. The intensities must be in the
range [0,1]
; for example, [0.4
0.6 0.7]
.
A hexadecimal color code is a character vector or a string
scalar that starts with a hash symbol (#
)
followed by three or six hexadecimal digits, which can range
from 0
to F
. The
values are not case sensitive. Thus, the color codes
'#FF8800'
,
'#ff8800'
,
'#F80'
, and
'#f80'
are equivalent.
Alternatively, you can specify some common colors by name. This table lists the named color options, the equivalent RGB triplets, and hexadecimal color codes.
Color Name | Short Name | RGB Triplet | Hexadecimal Color Code | Appearance |
---|---|---|---|---|
'red' | 'r' | [1 0 0] | '#FF0000' | |
'green' | 'g' | [0 1 0] | '#00FF00' | |
'blue' | 'b' | [0 0 1] | '#0000FF' | |
'cyan'
| 'c' | [0 1 1] | '#00FFFF' | |
'magenta' | 'm' | [1 0 1] | '#FF00FF' | |
'yellow' | 'y' | [1 1 0] | '#FFFF00' | |
'black' | 'k' | [0 0 0] | '#000000' | |
'white' | 'w' | [1 1 1] | '#FFFFFF' | |
'none' | Not applicable | Not applicable | Not applicable | No color |
Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in many types of plots.
RGB Triplet | Hexadecimal Color Code | Appearance |
---|---|---|
[0 0.4470 0.7410] | '#0072BD' | |
[0.8500 0.3250 0.0980] | '#D95319' | |
[0.9290 0.6940 0.1250] | '#EDB120' | |
[0.4940 0.1840 0.5560] | '#7E2F8E' | |
[0.4660 0.6740 0.1880] | '#77AC30' | |
[0.3010 0.7450 0.9330] | '#4DBEEE' | |
[0.6350 0.0780 0.1840] | '#A2142F' |
Data Types: double
| char
Visible
— State of visibility'on'
(default) | on/off logical valueState of visibility, specified as 'on'
or 'off'
,
or as numeric or logical 1
(true
) or
0
(false
). A value of 'on'
is equivalent to true
, and 'off'
is equivalent to
false
. Thus, you can use the value of this property as a logical
value. The value is stored as an on/off logical value of type matlab.lang.OnOffSwitchState
.
'on'
— Display the object.
'off'
— Hide the object without deleting it. You
still can access the properties of an invisible UI component.
To make your app start faster, set the Visible
property to
'off'
for all UI components that do not need to appear at
startup.
Enable
— Visual appearance of label'on'
(default) | on/off logical valueVisual appearance of the label, specified as 'on'
or
'off'
, or as numeric or logical 1
(true
) or 0
(false
). A value of 'on'
is
equivalent to true
, and 'off'
is
equivalent to false
. Thus, you can use the value of this
property as a logical value. The value is stored as an on/off logical value
of type matlab.lang.OnOffSwitchState
.
'on'
— Label appears normal
'off'
— Label appears dimmed
Tooltip
— Tooltip''
(default) | character vector | cell array of character vectors | string array | 1-D categorical arrayTooltip, specified as a character vector, cell array of character vectors, string array, or 1-D categorical array. Use this property to display a message when the user hovers the pointer over the component at run time. The tooltip displays even when the component is disabled. To display multiple lines of text, specify a cell array of character vectors or a string array. Each element in the array becomes a separate line of text. If you specify this property as a categorical array, MATLAB uses the values in the array, not the full set of categories.
ContextMenu
— Context menuGraphicsPlaceholder
array (default) | ContextMenu
objectContext menu, specified as a ContextMenu
object created using the uicontextmenu
function. Use this property to display a context menu when
you right-click on a component.
Position
— Label location and size[100 100 31 22]
(default) | [left bottom width height]
Label location and size, relative to the parent, specified as the vector [left bottom
width height]
. This table describes each element in the
vector.
Element | Description |
---|---|
left | Distance from the inner left edge of the parent container to the outer left edge of the label |
bottom | Distance from the inner bottom edge of the parent container to the outer bottom edge of the label |
width | Distance between the right and left outer edges of the label |
height | Distance between the top and bottom outer edges of the label |
The Position
values are relative to the
drawable area of the parent container. The drawable area is the area
inside the borders of the container and does not include the area occupied by decorations such
as a menu bar or title.
All measurements are in pixel units.
Example: [100 100 100 20]
InnerPosition
— Inner location and size of label[100 100 31 22]
(default) | [left bottom width height]
Inner location and size of label, specified as [left bottom width
height]
. Position values are relative to the parent container.
All measurements are in pixel units. This property value is identical to
Position
property.
OuterPosition
— Outer location and size of label[100 100 31 22]
(default) | [left bottom width height]
This property is read-only.
Outer location and size of label, returned as [left bottom width
height]
. Position values are relative to the parent container.
All measurements are in pixel units. This property value is identical to
Position
.
Layout
— Layout optionsLayoutOptions
array (default) | GridLayoutOptions
objectLayout options, specified as a
GridLayoutOptions
object. This property specifies
options for components that are children of grid layout containers. If the
component is not a child of a grid layout container (for example, it is a
child of a figure or panel), then this property is empty and has no effect.
However, if the component is a child of a grid layout container, you can
place the component in the desired row and column of the grid by setting the
Row
and Column
properties on
the GridLayoutOptions
object.
For example, this code places a label in the third row and second column of its parent grid.
g = uigridlayout([4 3]); tlabel = uilabel(g); tlabel.Layout.Row = 3; tlabel.Layout.Column = 2;
To make the label span multiple rows or columns, specify the
Row
or Column
property as a
two-element vector. For example, this label spans columns
2
through
3
:
tlabel.Layout.Column = [2 3];
CreateFcn
— Creation function''
(default) | function handle | cell array | character vectorObject creation function, specified as one of these values:
Function handle.
Cell array in which the first element is a function handle. Subsequent elements in the cell array are the arguments to pass to the callback function.
Character vector containing a valid MATLAB expression (not recommended). MATLAB evaluates this expression in the base workspace.
For more information about specifying a callback as a function handle, cell array, or character vector, see Write Callbacks in App Designer.
This property specifies a callback function to execute when MATLAB creates the object. MATLAB initializes all property values before executing the CreateFcn
callback. If you do not specify the CreateFcn
property, then MATLAB executes a default creation function.
Setting the CreateFcn
property on an existing component has no effect.
If you specify this property as a function handle or cell array, you can access the object that is being created using the first argument of the callback function. Otherwise, use the gcbo
function to access the object.
DeleteFcn
— Deletion function''
(default) | function handle | cell array | character vectorObject deletion function, specified as one of these values:
Function handle.
Cell array in which the first element is a function handle. Subsequent elements in the cell array are the arguments to pass to the callback function.
Character vector containing a valid MATLAB expression (not recommended). MATLAB evaluates this expression in the base workspace.
For more information about specifying a callback as a function handle, cell array, or character vector, see Write Callbacks in App Designer.
This property specifies a callback function to execute when MATLAB deletes the object. MATLAB executes the DeleteFcn
callback before destroying the
properties of the object. If you do not specify the DeleteFcn
property, then MATLAB executes a default deletion function.
If you specify this property as a function handle or cell array, you can access the
object that is being deleted using the first argument of the callback function.
Otherwise, use the gcbo
function to access the
object.
Interruptible
— Callback interruption'on'
(default) | on/off logical valueCallback interruption, specified as 'on'
or 'off'
, or as
numeric or logical 1
(true
) or
0
(false
). A value of 'on'
is equivalent to true
, and 'off'
is equivalent to
false
. Thus, you can use the value of this property as a logical
value. The value is stored as an on/off logical value of type matlab.lang.OnOffSwitchState
.
This property determines if a running callback can be interrupted. There are two callback states to consider:
The running callback is the currently executing callback.
The interrupting callback is a callback that tries to interrupt the running callback.
Whenever MATLAB invokes a callback, that callback attempts to interrupt the running
callback (if one exists). The Interruptible
property of the object
owning the running callback determines if interruption is allowed.
A value of 'on'
allows other callbacks to interrupt the
object's callbacks. The interruption occurs at the next point where
MATLAB processes the queue, such as when there is a drawnow
, figure
, uifigure
, getframe
, waitfor
, or pause
command.
If the running callback contains one of those commands, then MATLAB stops the execution of the callback at that point and executes the interrupting callback. MATLAB resumes executing the running callback when the interrupting callback completes.
If the running callback does not contain one of those commands, then MATLAB finishes executing the callback without interruption.
A value of 'off'
blocks all interruption attempts. The
BusyAction
property of the object owning the
interrupting callback determines if the interrupting callback is discarded
or put into a queue.
Note
Callback interruption and execution behave differently in these situations:
If the interrupting callback is a DeleteFcn
, CloseRequestFcn
or SizeChangedFcn
callback, then the interruption occurs regardless of the Interruptible
property value.
If the running callback is currently executing the waitfor
function, then the interruption occurs regardless of the Interruptible
property value.
Timer
objects execute according to schedule regardless of the Interruptible
property value.
When an interruption occurs, MATLAB does not save the state of properties or the display. For example, the
object returned by the gca
or gcf
command might change when
another callback executes.
BusyAction
— Callback queuing'queue'
(default) | 'cancel'
Callback queuing, specified as 'queue'
or 'cancel'
. The BusyAction
property determines how MATLAB handles the execution of interrupting callbacks. There are two callback states to consider:
The running callback is the currently executing callback.
The interrupting callback is a callback that tries to interrupt the running callback.
Whenever MATLAB invokes a callback, that callback attempts to interrupt a running callback. The Interruptible
property of the object owning the running callback determines if interruption is permitted. If interruption is not permitted, then the BusyAction
property of the object owning the interrupting callback determines if it is discarded or put in the queue. These are possible values of the BusyAction
property:
'queue'
— Puts the interrupting callback in a queue to be processed after the running callback finishes execution.
'cancel'
— Does not execute the interrupting callback.
BeingDeleted
— Deletion statusThis property is read-only.
Deletion status, returned as an on/off logical value of type matlab.lang.OnOffSwitchState
.
MATLAB sets the BeingDeleted
property to
'on'
when the DeleteFcn
callback begins
execution. The BeingDeleted
property remains set to
'on'
until the component object no longer exists.
Check the value of the BeingDeleted
property to verify that the object is not about to be deleted before querying or modifying it.
Parent
— Parent containerFigure
object (default) | Panel
object | Tab
object | ButtonGroup
object | GridLayout
objectParent container, specified as a Figure
object
created using the uifigure
function, or one of its child
containers: Tab
, Panel
, ButtonGroup
, or GridLayout
. If no container is specified, MATLAB calls the uifigure
function to create a new Figure
object that serves as the parent container.
HandleVisibility
— Visibility of object handle'on'
(default) | 'callback'
| 'off'
Visibility of the object handle, specified as 'on'
, 'callback'
,
or 'off'
.
This property controls the visibility of the object in its parent's
list of children. When an object is not visible in its parent's list
of children, it is not returned by functions that obtain objects by
searching the object hierarchy or querying properties. These functions
include get
, findobj
, clf
,
and close
. Objects are valid
even if they are not visible. If you can access an object, you can
set and get its properties, and pass it to any function that operates
on objects.
HandleVisibility Value | Description |
---|---|
'on' | The object is always visible. |
'callback' | The object is visible from within callbacks or functions invoked by callbacks, but not from within functions invoked from the command line. This option blocks access to the object at the command-line, but allows callback functions to access it. |
'off' | The object is invisible at all times. This option is useful
for preventing unintended changes to the UI by another function. Set
the HandleVisibility to 'off' to
temporarily hide the object during the execution of that function.
|
Type
— Type of graphics object'uilabel'
This property is read-only.
Type of graphics object, returned as 'uilabel'
.
Tag
— Object identifier''
(default) | character vector | string scalarObject identifier, specified as a character vector or string scalar. You can specify a unique Tag
value to serve as an identifier for an object. When you need access to the object elsewhere in your code, you can use the findobj
function to search for the object based on the Tag
value.
UserData
— User data[]
(default) | arrayUser data, specified as any MATLAB array. For example, you can specify a scalar, vector, matrix, cell array, character array, table, or structure. Use this property to store arbitrary data on an object.
If you are working in App Designer, create public or private properties in the app to share data instead of using the UserData
property. For more information, see Share Data Within App Designer Apps.