Add multiple key-value pairs to KeyValueStore
Use add
and addmulti
in map and reduce functions to pass data into the intermediate and final KeyValueStore
. This example uses identity map and reduce functions that pass the inputs straight through to the output. The map and reduce functions are listed at the end of the example as local functions.
inds = tabularTextDatastore('airlinesmall.csv','SelectedVariableNames',... {'ArrDelay','DepDelay'},'TreatAsMissing','NA'); preview(inds)
ans=8×2 table
ArrDelay DepDelay
________ ________
8 12
8 1
21 20
13 12
4 -1
59 63
3 -2
11 -1
outds = mapreduce(inds,@myMapper,@myReducer,mapreducer(0));
******************************** * MAPREDUCE PROGRESS * ******************************** Map 0% Reduce 0% Map 16% Reduce 0% Map 32% Reduce 0% Map 48% Reduce 0% Map 65% Reduce 0% Map 81% Reduce 0% Map 97% Reduce 0% Map 100% Reduce 0% Map 100% Reduce 50% Map 100% Reduce 100%
readall(outds)
ans=2×2 table
Key Value
____________ _________________
{'ArrDelay'} {123523x1 double}
{'DepDelay'} {123523x1 double}
Local Functions
function myMapper(data,info,intermKV) addmulti(intermKV,{'ArrDelay' 'DepDelay'},{data.ArrDelay data.DepDelay}); end function myReducer(key,intermValIter,outKV) data = getnext(intermValIter); while hasnext(intermValIter) data = [data; getnext(intermValIter)]; end add(outKV,key,data); end
KVStore
— Key-value pair storage objectKeyValueStore
objectKey-value pair storage object, specified as a KeyValueStore
object.
The mapreduce
function automatically creates
the KeyValueStore
object during execution:
In the map function, the name of the intermediate KeyValueStore
object
is the third input argument to the map function, myMapper(data,
info, intermKVStore)
. Use that same variable name to add
intermediate key-value pairs with add
or addmulti
in
the map function.
In the reduce function, the name of the final KeyValueStore
object
is the third input argument to the reduce function, myReducer(intermKey,
intermValIter, outKVStore)
. Use that same variable name
to add final key-value pairs with add
or addmulti
in
the reduce function.
For more information, see KeyValueStore
.
keys
— KeysKeys, specified as a numeric scalar, numeric vector, character vector, string array, cell vector of character vectors, or cell vector of numeric scalars. If the keys are a numeric vector, cell vector, or string array, then each entry specifies a different key.
All of the keys added by the map function must have the same class. The keys added by the reduce function must also have the same class, but that class can differ from the class of the keys added by the map function.
Numeric keys cannot be NaN
, complex, logical,
or sparse.
Example: addmulti(intermKVStore,{'Sum'; 'Count'; 'Variance'},{sum(X);
numel(X); var(X)})
adds three key-value pairs to an intermediate KeyValueStore
object
(named intermKVStore
) using a cell vector to specify
the keys.
Example: addmulti(intermKVStore,[1
2 3 4],{sum(X); mean(X); max(X); min(X)})
adds four key-value
pairs to an intermediate KeyValueStore
object using
a numeric vector to specify the keys.
Example: addmulti(outKVStore,'Stats',{[mean(X)
max(X) min(X) var(X) std(X)]})
adds a single key-value pair
to a final KeyValueStore
object (named outKVStore
)
using a character vector as the key.
Data Types: single
| double
| int8
| int16
| int32
| int64
| uint8
| uint16
| uint32
| uint64
| char
| string
values
— ValuesValues, specified as a cell array. Each entry in the cell array
specifies the value in a key-value pair, so numel(values)
must
be equal to the number of keys. The entries in the cell array can
be any MATLAB® object, including all valid MATLAB data types.
The OutputType
argument of mapreduce
affects
the type of values that the reduce function can add:
If the OutputType
is 'Binary'
(the
default), then a value added by the reduce function can be any MATLAB object.
If the OutputType
is
'TabularText'
, then a value added by the
reduce function can be a numeric scalar, character vector, or string
scalar when using the add
function.
Additionally, you can use the addmulti
function
to add multiple values with a numeric vector, cell vector of
character vectors, cell vector of numeric scalars, or string array.
In each case, the numeric values cannot be NaN
,
complex, logical, or sparse.
Note
The above key-value pair requirements may differ when using other products with mapreduce. See the documentation for the appropriate product to get product-specific key-value pair requirements.
Example: addmulti(intermKVStore,{'Sum'; 'Count'; 'Variance'},{sum(X);
numel(X); var(X)})
adds three key-value pairs to an intermediate KeyValueStore
object
named intermKVStore
.
Example: addmulti(intermKVStore,[1
2 3 4],{sum(X); mean(X); max(X); min(X)})
adds four key-value
pairs to an intermediate KeyValueStore
object using
a cell vector.
Example: addmulti(outKVStore,'Stats',{[mean(X)
max(X) min(X) var(X) std(X)]})
adds a single key-value pair
to a final KeyValueStore
object named outKVStore
.
Example: addmulti(outKVStore,{'Distance' 'Time'},{table.Distance
table.Time})
adds two key-value pairs using variables in
a table to specify the values.
Avoid using add
in a loop, as
it can negatively affect mapreduce
execution
time. Instead, use cell arrays to collect multiple values (using vectorized
operations if possible) and use a single call to addmulti
.
You have a modified version of this example. Do you want to open this example with your edits?