Option set for tfest
opt = tfestOptions
opt = tfestOptions(Name,Value)
creates
the default option set for opt
= tfestOptionstfest
.
creates
an option set with the options specified by one or more opt
= tfestOptions(Name,Value
)Name,Value
pair
arguments.
Specify optional
comma-separated pairs of Name,Value
arguments. Name
is
the argument name and Value
is the corresponding value.
Name
must appear inside quotes. You can specify several name and value
pair arguments in any order as
Name1,Value1,...,NameN,ValueN
.
'InitializeMethod'
— Algorithm used to initialize the numerator and denominator'iv'
(default) | 'svf'
| 'gpmf'
| 'n4sid'
| 'all'
Algorithm used to initialize the values of the numerator and denominator of the
output of tfest
, applicable only for estimation of
continuous-time transfer functions using time-domain data, specified as one of the
following values:
'iv'
— Instrument Variable approach.
'svf'
— State Variable Filters approach.
'gpmf'
— Generalized Poisson Moment Functions
approach.
'n4sid'
— Subspace state-space estimation
approach.
'all'
— Combination of all of the preceding
approaches. The software tries all these methods and selects the method that
yields the smallest value of prediction error norm.
'InitializeOptions'
— Option set for the initialization algorithmOption set for the initialization algorithm used to initialize the values of the
numerator and denominator of the output of tfest
, specified as a
structure with the following fields:
N4Weight
— Calculates the weighting matrices used in
the singular-value decomposition step of the 'n4sid'
algorithm.
Applicable when InitializeMethod
is
'n4sid'
.
N4Weight
is specified as one of the following
values:
'MOESP'
— Uses the MOESP algorithm by
Verhaegen.
'CVA'
— Uses the canonical variate algorithm
(CVA) by Larimore.
'SSARX'
— A subspace identification method that
uses an ARX estimation based algorithm to compute the weighting.
Specifying this option allows unbiased estimates when using data that is collected in closed-loop operation. For more information about the algorithm, see [6].
'auto'
— The software automatically determines
if the MOESP algorithm or the CVA algorithm should be used in the
singular-value decomposition step.
Default:
'auto'
N4Horizon
— Determines the forward and backward
prediction horizons used by the 'n4sid'
algorithm. Applicable
when InitializeMethod
is 'n4sid'
.
N4Horizon
is a row vector with three elements:
[r sy su]
, where r
is the
maximum forward prediction horizon. The algorithm uses up to r
step-ahead predictors. sy
is the number of past outputs, and
su
is the number of past inputs that are used for the
predictions. See pages 209 and 210 in [1] for more information. These numbers can have a substantial influence on the
quality of the resulting model, and there are no simple rules for choosing them.
Making 'N4Horizon'
a k
-by-3 matrix means
that each row of 'N4Horizon'
is tried, and the value that gives
the best (prediction) fit to data is selected. k
is the number
of guesses of [r sy su]
combinations.
If N4Horizon = 'auto'
, the software uses an Akaike
Information Criterion (AIC) for the selection of sy
and
su
.
Default:
'auto'
FilterTimeConstant
— Time constant of the
differentiating filter used by the iv
, svf
,
and gpmf
initialization methods (see [4] and [5]).
FilterTimeConstant
specifies the cutoff frequency of the
differentiating filter, Fcutoff,
as:
Ts is the sample time of the estimation data.
Specify FilterTimeConstant
as a positive number, typically
less than 1. A good value of FilterTimeConstant
is the ratio of
Ts to the dominating time constant
of the system.
Default:
0.1
MaxIterations
— Maximum number of iterations.
Applicable when InitializeMethod
is 'iv'
.
Default:
30
Tolerance
— Convergence tolerance. Applicable when
InitializeMethod
is 'iv'
.
Default:
0.01
'InitialCondition'
— Handling of initial conditions'auto'
(default) | 'zero'
| 'estimate'
| 'backcast'
Handling of initial conditions during estimation, specified as one of the following values:
'zero'
— All initial conditions
are taken as zero.
'estimate'
— The necessary
initial conditions are treated as estimation parameters.
'backcast'
— The necessary
initial conditions are estimated by a backcasting (backward filtering)
process, described in [2].
'auto'
— An automatic choice
among the preceding options is made, guided by the data.
'WeightingFilter'
— Weighting prefilter[]
(default) | vector | matrix | cell array | linear system | 'inv'
| 'invsqrt'
Weighting prefilter applied to the loss function to be minimized
during estimation. To understand the effect of WeightingFilter
on
the loss function, see Loss Function and Model Quality Metrics.
Specify WeightingFilter
as one of the following
values:
[]
— No weighting prefilter
is used.
Passbands — Specify a row vector or matrix
containing frequency values that define desired passbands. You select
a frequency band where the fit between estimated model and estimation
data is optimized. For example, [wl,wh]
where wl
and wh
represent
lower and upper limits of a passband. For a matrix with several rows
defining frequency passbands, [w1l,w1h;w2l,w2h;w3l,w3h;...]
,
the estimation algorithm uses the union of the frequency ranges to
define the estimation passband.
Passbands are expressed in rad/TimeUnit
for
time-domain data and in FrequencyUnit
for frequency-domain
data, where TimeUnit
and FrequencyUnit
are
the time and frequency units of the estimation data.
SISO filter — Specify a single-input-single-output (SISO) linear filter in one of the following ways:
A SISO LTI model
{A,B,C,D}
format, which specifies
the state-space matrices of a filter with the same sample time as
estimation data.
{numerator,denominator}
format,
which specifies the numerator and denominator of the filter as a transfer
function with the same sample time as estimation data.
This option calculates the weighting function as a product of the filter and the input spectrum to estimate the transfer function.
Weighting vector — Applicable for frequency-domain
data only. Specify a column vector of weights. This vector must have
the same length as the frequency vector of the data set, Data.Frequency
.
Each input and output response in the data is multiplied by the corresponding
weight at that frequency.
'inv'
— Applicable for estimation using frequency-response data
only. Use as the weighting filter, where
G(ω) is the complex frequency-response
data. Use this option for capturing relatively low amplitude dynamics in data, or
for fitting data with high modal density. This option also makes it easier to
specify channel-dependent weighting filters for MIMO frequency-response
data.
'invsqrt'
— Applicable for estimation using
frequency-response data only. Use as the weighting filter. Use this option for capturing
relatively low amplitude dynamics in data, or for fitting data with high modal
density. This option also makes it easier to specify channel-dependent weighting
filters for MIMO frequency-response data.
'EnforceStability'
— Control whether to enforce stability of modelfalse
(default) | true
Control whether to enforce stability of estimated model, specified
as the comma-separated pair consisting of 'EnforceStability'
and
either true
or false
.
Use this option when estimating models using frequency-domain data. Models estimated using time-domain data are always stable.
Data Types: logical
'EstimateCovariance'
— Control whether to generate parameter covariance datatrue
(default) | false
Controls whether parameter covariance data is generated, specified as
true
or false
.
If EstimateCovariance
is true
, then use
getcov
to fetch the covariance matrix
from the estimated model.
'Display'
— Specify whether to display the estimation progress'off'
(default) | 'on'
Specify whether to display the estimation progress, specified as one of the following values:
'on'
— Information on model
structure and estimation results are displayed in a progress-viewer
window.
'off'
— No progress or results
information is displayed.
'InputOffset'
— Removal of offset from time-domain input data during estimation[]
(default) | vector of positive integers | matrixRemoval of offset from time-domain input data during estimation,
specified as the comma-separated pair consisting of 'InputOffset'
and
one of the following:
A column vector of positive integers of length Nu, where Nu is the number of inputs.
[]
— Indicates no offset.
Nu-by-Ne matrix
— For multi-experiment data, specify InputOffset
as
an Nu-by-Ne matrix. Nu is
the number of inputs, and Ne is the number of experiments.
Each entry specified by InputOffset
is
subtracted from the corresponding input data.
'OutputOffset'
— Removal of offset from time-domain output data during estimation[]
(default) | vector | matrixRemoval of offset from time-domain output data during estimation,
specified as the comma-separated pair consisting of 'OutputOffset'
and
one of the following:
A column vector of length Ny, where Ny is the number of outputs.
[]
— Indicates no offset.
Ny-by-Ne matrix
— For multi-experiment data, specify OutputOffset
as
a Ny-by-Ne matrix. Ny is
the number of outputs, and Ne is the number of
experiments.
Each entry specified by OutputOffset
is
subtracted from the corresponding output data.
'OutputWeight'
— Weighting of prediction errors in multi-output estimations[]
(default) | 'noise'
| positive semidefinite symmetric matrixWeighting of prediction errors in multi-output estimations, specified as one of the following values:
'noise'
— Minimize , where E represents
the prediction error and N
is the number of data
samples. This choice is optimal in a statistical sense and leads to
maximum likelihood estimates if nothing is known about the variance
of the noise. It uses the inverse of the estimated noise variance
as the weighting function.
Note
OutputWeight
must not be 'noise'
if SearchMethod
is 'lsqnonlin'
.
Positive semidefinite symmetric matrix (W
)
— Minimize the trace of the weighted prediction error matrix trace(E'*E*W/N)
where:
E is the matrix of prediction errors, with one column for each output, and W is the positive semidefinite symmetric matrix of size equal to the number of outputs. Use W to specify the relative importance of outputs in multiple-output models, or the reliability of corresponding data.
N
is the number of data samples.
[]
— The software chooses
between the 'noise'
or using the identity matrix
for W
.
This option is relevant for only multi-output models.
'Regularization'
— Options for regularized estimation of model parametersOptions for regularized estimation of model parameters. For more information on regularization, see Regularized Estimates of Model Parameters.
Regularization
is a structure with the following
fields:
Lambda
— Constant that determines
the bias versus variance tradeoff.
Specify a positive scalar to add the regularization term to the estimation cost.
The default value of zero implies no regularization.
Default: 0
R
— Weighting matrix.
Specify a vector of nonnegative numbers or a square positive semi-definite matrix. The length must be equal to the number of free parameters of the model.
For black-box models, using the default value is recommended.
For structured and grey-box models, you can also specify a vector
of np
positive numbers such that each entry denotes
the confidence in the value of the associated parameter.
The default value of 1 implies a value of eye(npfree)
,
where npfree
is the number of free parameters.
Default: 1
Nominal
— The nominal value
towards which the free parameters are pulled during estimation.
The default value of zero implies that the parameter values
are pulled towards zero. If you are refining a model, you can set
the value to 'model'
to pull the parameters towards
the parameter values of the initial model. The initial parameter values
must be finite for this setting to work.
Default: 0
'SearchMethod'
— Numerical search method used for iterative parameter estimation'auto'
(default) | 'gn'
| 'gna'
| 'lm'
| 'grad'
| 'lsqnonlin'
| 'fmincon'
Numerical search method used for iterative parameter estimation,
specified as the comma-separated pair consisting of 'SearchMethod'
and
one of the following:
'auto'
— A combination of
the line search algorithms, 'gn'
, 'lm'
, 'gna'
,
and 'grad'
methods is tried in sequence at each
iteration. The first descent direction leading to a reduction in estimation
cost is used.
'gn'
— Subspace Gauss-Newton least squares search.
Singular values of the Jacobian matrix less than
GnPinvConstant*eps*max(size(J))*norm(J)
are discarded
when computing the search direction. J is the Jacobian
matrix. The Hessian matrix is approximated as
JTJ. If there is no
improvement in this direction, the function tries the gradient direction.
'gna'
— Adaptive subspace Gauss-Newton search.
Eigenvalues less than gamma*max(sv)
of the Hessian are
ignored, where sv contains the singular values of the
Hessian. The Gauss-Newton direction is computed in the remaining subspace.
gamma has the initial value
InitialGnaTolerance
(see Advanced
in
'SearchOptions'
for more information). This value is
increased by the factor LMStep
each time the search fails to
find a lower value of the criterion in fewer than five bisections. This value is
decreased by the factor 2*LMStep
each time a search is
successful without any bisections.
'lm'
— Levenberg-Marquardt
least squares search, where the next parameter value is -pinv(H+d*I)*grad
from
the previous one. H is the Hessian, I is
the identity matrix, and grad is the gradient. d is
a number that is increased until a lower value of the criterion is
found.
'grad'
— Steepest descent
least squares search.
'lsqnonlin'
— Trust-region-reflective
algorithm of lsqnonlin
(Optimization Toolbox). Requires Optimization Toolbox™ software.
'fmincon'
— Constrained nonlinear solvers. You can
use the sequential quadratic programming (SQP) and trust-region-reflective
algorithms of the fmincon
(Optimization Toolbox) solver. If you have
Optimization Toolbox software, you can also use the interior-point and active-set
algorithms of the fmincon
solver. Specify the algorithm in
the SearchOptions.Algorithm
option. The
fmincon
algorithms may result in improved estimation
results in the following scenarios:
Constrained minimization problems when there are bounds imposed on the model parameters.
Model structures where the loss function is a nonlinear or non smooth function of the parameters.
Multi-output model estimation. A determinant loss function
is minimized by default for multi-output model estimation.
fmincon
algorithms are able to minimize such loss
functions directly. The other search methods such as
'lm'
and 'gn'
minimize the
determinant loss function by alternately estimating the noise variance
and reducing the loss value for a given noise variance value. Hence, the
fmincon
algorithms can offer better efficiency
and accuracy for multi-output model estimations.
'SearchOptions'
— Option set for the search algorithmOption set for the search algorithm, specified as the comma-separated pair consisting
of 'SearchOptions'
and a search option set with fields that depend on
the value of SearchMethod
.
SearchOptions
Structure When SearchMethod
is Specified
as 'gn'
, 'gna'
, 'lm'
,
'grad'
, or 'auto'
Field Name | Description | Default | ||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Tolerance | Minimum percentage difference between the current value
of the loss function and its expected improvement after the next iteration,
specified as a positive scalar. When the percentage of expected improvement
is less than | 0.01 | ||||||||||||||||||||||||||||||
MaxIterations | Maximum number of iterations during loss-function minimization, specified as a positive
integer. The iterations stop when Setting
Use
| 20 | ||||||||||||||||||||||||||||||
Advanced | Advanced search settings, specified as a structure with the following fields:
|
SearchOptions
Structure When SearchMethod
is Specified
as 'lsqnonlin'
Field Name | Description | Default |
---|---|---|
FunctionTolerance | Termination tolerance on the loss function that the software minimizes to determine the estimated parameter values, specified as a positive scalar. The
value of | 1e-5 |
StepTolerance | Termination tolerance on the estimated parameter values, specified as a positive scalar. The value of | 1e-6 |
MaxIterations | Maximum number of iterations during loss-function minimization, specified as a positive
integer. The iterations stop when The value of
| 20 |
Advanced | Advanced search settings, specified as an option set
for For more information, see the Optimization Options table in Optimization Options (Optimization Toolbox). | Use optimset('lsqnonlin') to create a default
option set. |
SearchOptions
Structure When SearchMethod
is Specified
as 'fmincon'
Field Name | Description | Default |
---|---|---|
Algorithm |
For more information about the algorithms, see Constrained Nonlinear Optimization Algorithms (Optimization Toolbox) and Choosing the Algorithm (Optimization Toolbox). | 'sqp' |
FunctionTolerance | Termination tolerance on the loss function that the software minimizes to determine the estimated parameter values, specified as a positive scalar. | 1e-6 |
StepTolerance | Termination tolerance on the estimated parameter values, specified as a positive scalar. | 1e-6 |
MaxIterations | Maximum number of iterations during loss function minimization, specified as a positive
integer. The iterations stop when | 100 |
'Advanced'
— Additional advanced optionsAdditional advanced options, specified as a structure with the following fields:
ErrorThreshold
— Specifies
when to adjust the weight of large errors from quadratic to linear.
Errors larger than ErrorThreshold
times the
estimated standard deviation have a linear weight in the loss function.
The standard deviation is estimated robustly as the median of the
absolute deviations from the median of the prediction errors, divided
by 0.7
. For more information on robust norm choices,
see section 15.2 of [1].
ErrorThreshold = 0
disables
robustification and leads to a purely quadratic loss function. When
estimating with frequency-domain data, the software sets ErrorThreshold
to
zero. For time-domain data that contains outliers, try setting ErrorThreshold
to 1.6
.
Default: 0
MaxSize
— Specifies the
maximum number of elements in a segment when input-output data is
split into segments.
MaxSize
must be a positive, integer value.
Default: 250000
StabilityThreshold
— Specifies
thresholds for stability tests.
StabilityThreshold
is a structure with the
following fields:
s
— Specifies the location
of the right-most pole to test the stability of continuous-time models.
A model is considered stable when its right-most pole is to the left
of s
.
Default: 0
z
— Specifies the maximum
distance of all poles from the origin to test stability of discrete-time
models. A model is considered stable if all poles are within the distance z
from
the origin.
Default: 1+sqrt(eps)
AutoInitThreshold
— Specifies
when to automatically estimate the initial conditions.
The initial condition is estimated when
ymeas is the measured output.
yp,z is the predicted output of a model estimated using zero initial states.
yp,e is the predicted output of a model estimated using estimated initial states.
Applicable when InitialCondition
is 'auto'
.
Default: 1.05
opt
— Option set for tfest
tfestOptions
option setOption set for tfest
,
returned as an tfestOptions
option set.
opt = tfestOptions;
Create an options set for tfest
using the 'n4sid'
initialization algorithm and set the Display
to 'on'
.
opt = tfestOptions('InitializeMethod','n4sid','Display','on');
Alternatively, use dot notation to set the values of opt
.
opt = tfestOptions; opt.InitializeMethod = 'n4sid'; opt.Display = 'on';
The names of some estimation and analysis options were changed in R2018a. Prior names still work. For details, see the R2018a release note Renaming of Estimation and Analysis Options.
[1] Ljung, L. System Identification: Theory for the User. Upper Saddle River, NJ: Prentice-Hall PTR, 1999.
[2] Knudsen, T. "New method for estimating ARMAX models," In Proceedings of 10th IFAC Symposium on System Identification, SYSID'94, Copenhagen, Denmark, July 1994, Vol. 2, pp. 611–617.
[3] Wills, Adrian, B. Ninness, and S. Gibson. “On Gradient-Based Search for Multivariable System Estimates.” Proceedings of the 16th IFAC World Congress, Prague, Czech Republic, July 3–8, 2005. Oxford, UK: Elsevier Ltd., 2005.
[4] Garnier, H., M. Mensler, and A. Richard. “Continuous-time Model Identification From Sampled Data: Implementation Issues and Performance Evaluation” International Journal of Control, 2003, Vol. 76, Issue 13, pp 1337–1357.
[5] Ljung, L. “Experiments With Identification of Continuous-Time Models.” Proceedings of the 15th IFAC Symposium on System Identification. 2009.
[6] Jansson, M. “Subspace identification and ARX modeling.” 13th IFAC Symposium on System Identification , Rotterdam, The Netherlands, 2003.
You have a modified version of this example. Do you want to open this example with your edits?