Options set for impulseest
options = impulseestOptions
options = impulseestOptions(Name,Value)
creates
a default options set for options
= impulseestOptionsimpulseest
.
creates an options set with the options specified by one or more options
= impulseestOptions(Name,Value
)Name,Value
pair
arguments.
Specify optional
comma-separated pairs of Name,Value
arguments. Name
is
the argument name and Value
is the corresponding value.
Name
must appear inside quotes. You can specify several name and value
pair arguments in any order as
Name1,Value1,...,NameN,ValueN
.
|
Regularizing kernel, used for regularized estimates of impulse response for all input-output channels. Regularization reduces variance of estimated model coefficients and produces a smoother response by trading variance for bias. For more information, see [1]. Regularization is specified as one of the following values:
Default: |
|
Order of the input prewhitening filter. Must be one of the following:
Use a nonzero value of prewhitening only for unregularized estimation
( Default: |
|
Input signal offset level of time-domain estimation data. Must be one of the following:
Default: |
|
Output signal offset level of time-domain estimation data. Must be one of the following:
Default: |
|
Structure, used during regularized estimation, with the following fields:
|
|
Option set containing the specified options for |
A linear model cannot describe arbitrary input-output
offsets. Therefore, before using the data, you must either detrend
it or remove the levels using InputOffset
and OutputOffset
.
You can reintroduce the removed data during simulations by using the InputOffset
and OutputOffset
simulation
options. For more information, see simOptions
.
Estimating the impulse response by specifying either InputOffset
, OutputOffset
or
both is equivalent to detrending the data using getTrend
and detrend
.
For example:
opt = impulseestOptions('InputOffset',in_off,'OutputOffset',out_off); impulseest(data,opt);
is the same as:
Tr = getTrend(data), Tr.InputOffset = in_off TR.OutputOffset = out_off dataT = detrend(data,Tr) impulseest(dataT)
[1] T. Chen, H. Ohlsson, and L. Ljung. “On the Estimation of Transfer Functions, Regularizations and Gaussian Processes - Revisited”, Automatica, Volume 48, August 2012.