Add platform to tracking scenario
ptfm = platform(sc)
ptfm = platform(sc,Name,Value)
adds a ptfm
= platform(sc
)Platform
object, ptfm
, to the tracking scenario, sc
.
The function creates a platform with default property values. Platforms are defined as
points or cuboids with aspect-dependent properties. Each platform is automatically
assigned a unique ID specified in the platformID
field of the Platform
object.
adds a platform with additional properties specified by one or more
ptfm
= platform(sc
,Name,Value
)Name,Value
pair arguments. Name
is a
property name and Value
is the corresponding value.
Name
must appear inside single quotes (''
).
You can specify several name-value pair arguments in any order as
Name1,Value1,...,NameN,ValueN
. Any unspecified properties take
default values.
sc
— Tracking scenariotrackingScenario
objectTracking scenario, specified as a trackingScenario
object.
Specify optional
comma-separated pairs of Name,Value
arguments. Name
is
the argument name and Value
is the corresponding value.
Name
must appear inside quotes. You can specify several name and value
pair arguments in any order as
Name1,Value1,...,NameN,ValueN
.
'ClassID'
— Platform classification identifier0
(default) | nonnegative integerPlatform classification identifier specified as a nonnegative integer.
You can define your own platform classification scheme and assign
ClassID
values to platforms according to the
scheme. The value of 0
is reserved for an object of
unknown or unassigned class.
Example: 5
Data Types: double
'Position'
— Position of platformThis property is read-only.
Current position of the platform, specified as a 3-element vector of scalars.
When the IsEarthCentered
property of
the scenario is set to false
, the
position is specified as a three element Cartesian state
[x
, y
,
z
] in meters.
When the IsEarthCentered
property of
the scenario is set to true
, the position
is specified as a three element geodetic state:
latitude
in degrees,
longitude
in degrees, and
altitude
in meters.
You should only specify position when creating a stationary platform.
If you choose to specify the trajectory of the platform, do not use
Position
. Instead, use the
Trajectory
argument.
Data Types: double
'Orientation'
— Orientation of platformThis property is read-only.
Orientation of the platform, specified as a 3-element vector of
scalars in degrees. The three scalars are the [yaw
,
pitch
, roll
] rotation angles
from the local reference frame to the platform's body frame.
You should only specify Orientation
when creating a
stationary platform. If you choose to specify the orientation over time,
use the Trajectory
argument.
Data Types: double
'Dimensions'
— Platform dimensions and origin offsetstruct
Platform dimensions and origin offset, specified as a structure. The structure contains the
Length
, Width
, Height
, and
OriginOffset
of a cuboid that approximates the dimensions of the
platform. The OriginOffset
is the position vector from the center of
the cuboid to the origin of the platform coordinate frame. The
OriginOffset
is expressed in the platform coordinate system. For
example, if the platform origin is at the center of the cuboid rear face as shown in the
following figure, then set OriginOffset
as
[-L/2, 0, 0]
. The default value for
Dimensions
is a structure with all fields set to zero, which
corresponds to a point model.
Fields of Dimensions
Fields | Description | Default |
---|---|---|
Length | Dimension of a cuboid along the x direction | 0 |
Width | Dimension of a cuboid along the y direction | 0 |
Height | Dimension of a cuboid along the z direction | 0 |
OriginOffset | Position of the platform coordinate frame origin with respect to the cuboid center | [0 0 0 ] |
Example: struct('Length',5,'Width',2.5,'Height',3.5,'OriginOffset',[-2.5 0 0])
Data Types: struct
'Trajectory'
— Platform motionkinematicTrajectory
object | waypointTrajectory
object | geoTrajectory
objectPlatform motion, specified as either a kinematicTrajectory
object, a waypointTrajectory
object, or a geoTrajectory
object. The
trajectory object defines the time evolution of the position and velocity of the
platform frame origin, as well as the orientation of the platform frame relative to the
scenario frame.
When the IsEarthCentered
property of the scenario is
set to false
, you can use the kinematicTrajectory
or the waypointTrajectory
object. By default, a stationary kinematicTrajectory
object is used.
When the IsEarthCentered
property of the scenario is
set to true
, you can only use the geoTrajectory
object. By default, a stationary geoTrajectory
object is used.
'Signatures'
— Platform signaturesrcsSignature
irSignature
tsSignature
} (default) | cell array of signature objectsPlatform signatures, specified as a cell array of irSignature
, rcsSignature
, and tsSignature
objects or an empty cell array. The cell array
contains at most only one instance for each type of signature objects
listed. A signature represents the reflection or emission pattern of a
platform such as its radar cross-section, target strength, or IR
intensity.
'PoseEstimator'
— Platform pose estimatorinsSensor
System object (default) | pose estimator objectA pose estimator, specified as a pose estimator object. The pose
estimator determines platform pose with respect to the local NED
scenario coordinate. The interface of any pose estimator must match the
interface of insSensor
. By default, pose estimator accuracy properties
are set to zero.
'Emitters'
— Emitters mounted on platformEmitters mounted on the platform, specified as a cell array of emitter
objects, such as radarEmitter
or sonarEmitter
.
'Sensors'
— Sensors mounted on platformSensors mounted on platform, specified as a cell array of sensor
objects such as irSensor
, radarSensor
, monostaticRadarSensor
, or sonarSensor
.
ptfm
— Scenario platformPlatform
objectScenario platform, returned as a Platform
object.
Create a tracking scenario and a platform following a circular path.
scene = trackingScenario('UpdateRate',1/50); % Create a platform plat = platform(scene); % Follow a circular trajectory 1 km in radius completing in 400 hundred seconds. plat.Trajectory = waypointTrajectory('Waypoints', [0 1000 0; 1000 0 0; 0 -1000 0; -1000 0 0; 0 1000 0], ... 'TimeOfArrival', [0; 100; 200; 300; 400]); % Perform the simulation while scene.advance p = pose(plat); fprintf('Time = %f ', scene.SimulationTime); fprintf('Position = ['); fprintf('%f ', p.Position); fprintf('] Velocity = ['); fprintf('%f ', p.Velocity); fprintf(']\n'); end
Time = 50.000000
Position = [
707.095476 707.100019 0.000000
] Velocity = [
11.107152 -11.107075 0.000000
]
Time = 100.000000
Position = [
1000.000000 0.000000 0.000000
] Velocity = [
0.000476 -15.707961 0.000000
]
Time = 150.000000
Position = [
707.115558 -707.115461 0.000000
] Velocity = [
-11.107346 -11.107341 0.000000
]
Time = 200.000000
Position = [
0.000000 -1000.000000 0.000000
] Velocity = [
-15.707963 0.000460 0.000000
]
Time = 250.000000
Position = [
-707.098004 -707.098102 0.000000
] Velocity = [
-11.107069 11.107074 0.000000
]
Time = 300.000000
Position = [
-1000.000000 0.000000 0.000000
] Velocity = [
-0.000476 15.707966 0.000000
]
Time = 350.000000
Position = [
-707.118086 707.113543 0.000000
] Velocity = [
11.107262 11.107340 0.000000
]
Time = 400.000000
Position = [
-0.000000 1000.000000 0.000000
] Velocity = [
15.708226 -0.000493 0.000000
]
Create a tracking scenario with two cuboid platforms following circular trajectories.
sc = trackingScenario; % Create the platform for a truck with dimension 5 x 2.5 x 3.5 (m). p1 = platform(sc); p1.Dimensions = struct('Length',5,'Width',2.5,'Height',3.5,'OriginOffset',[0 0 0]); % Specify the truck's trajectory as a circle with radius 20 meters. p1.Trajectory = waypointTrajectory('Waypoints', [20*cos(2*pi*(0:10)'/10)... 20*sin(2*pi*(0:10)'/10) -1.75*ones(11,1)], ... 'TimeOfArrival', linspace(0,50,11)'); % Create the platform for a small quadcopter with dimension .3 x .3 x .1 (m). p2 = platform(sc); p2.Dimensions = struct('Length',.3,'Width',.3,'Height',.1,'OriginOffset',[0 0 0]); % The quadcopter follows the truck at 10 meteres above with small angular delay. % Note that the negative z coordinates correspond to positive elevation. p2.Trajectory = waypointTrajectory('Waypoints', [20*cos(2*pi*((0:10)'-.6)/10)... 20*sin(2*pi*((0:10)'-.6)/10) -11.80*ones(11,1)], ... 'TimeOfArrival', linspace(0,50,11)');
Visualize the results using theaterPlot
.
tp = theaterPlot('XLim',[-30 30],'YLim',[-30 30],'Zlim',[-12 5]); pp1 = platformPlotter(tp,'DisplayName','truck','Marker','s'); pp2 = platformPlotter(tp,'DisplayName','quadcopter','Marker','o'); % Specify a view direction and animate. view(-28,37); set(gca,'Zdir','reverse'); while advance(sc) poses = platformPoses(sc); plotPlatform(pp1, poses(1).Position, p1.Dimensions, poses(1).Orientation); plotPlatform(pp2, poses(2).Position, p2.Dimensions, poses(2).Orientation); end
You have a modified version of this example. Do you want to open this example with your edits?