Class: regARIMA
Estimate parameters of regression models with ARIMA errors
EstMdl = estimate(Mdl,y)
[EstMdl,EstParamCov,logL,info]
= estimate(Mdl,y)
[EstMdl,EstParamCov,logL,info]
= estimate(Mdl,y,Name,Value)
uses
maximum likelihood to estimate the parameters of the regression model
with ARIMA time series errors, EstMdl
= estimate(Mdl
,y
)Mdl
, given the
response series y
. EstMdl
is
a regARIMA
model
that stores the results.
[
additionally
returns EstMdl
,EstParamCov
,logL
,info
]
= estimate(Mdl
,y
)EstParamCov
, the variance-covariance matrix
associated with estimated parameters, logL
, the
optimized loglikelihood objective function, and info
,
a data structure of summary information.
[
estimates
the model using additional options specified by one or more EstMdl
,EstParamCov
,logL
,info
]
= estimate(Mdl
,y
,Name,Value
)Name,Value
pair
arguments.
estimate
estimates the parameters as follows:
Infer the unconditional disturbances from the regression model.
Infer the residuals of the ARIMA error model.
Use the distribution of the innovations to build the likelihood function.
Maximize the loglikelihood function with respect to
the parameters using fmincon
.
[1] Box, G. E. P., G. M. Jenkins, and G. C. Reinsel. Time Series Analysis: Forecasting and Control. 3rd ed. Englewood Cliffs, NJ: Prentice Hall, 1994.
[2] Davidson, R., and J. G. MacKinnon. Econometric Theory and Methods. Oxford, UK: Oxford University Press, 2004.
[3] Enders, W. Applied Econometric Time Series. Hoboken, NJ: John Wiley & Sons, Inc., 1995.
[4] Hamilton, J. D. Time Series Analysis. Princeton, NJ: Princeton University Press, 1994.
[5] Pankratz, A. Forecasting with Dynamic Regression Models. John Wiley & Sons, Inc., 1991.
[6] Tsay, R. S. Analysis of Financial Time Series. 2nd ed. Hoboken, NJ: John Wiley & Sons, Inc., 2005.