Parameters of an imported ONNX network for deep learning
ONNXParameters
contains the parameters (such as weights and
bias) of an imported ONNX™ (Open Neural Network Exchange) network. Use ONNXParameters
to
perform tasks such as transfer learning.
Create an ONNXParameters
object by using importONNXFunction
.
Learnables
— Parameters updated during network trainingParameters updated during network training, specified as a structure. For example,
the weights of convolution and fully connected layers are parameters that the network
learns during training. To prevent Learnables
parameters from being
updated during training, convert them to Nonlearnables
by using
freezeParameters
. Convert frozen parameters back to
Learnables
by using unfreezeParameters
.
Add a new parameter to params.Learnables
by using addParameter
.
Remove a parameter from params.Learnables
by using removeParameter
.
Access the fields of the structure Learnables
by using dot
notation. For example, params.Learnables.conv1_W
could display the
weights of the first convolution layer. Initialize the weights for transfer learning by
entering params.Learnables.conv1_W = rand([1000,4096])
. For more
details about assigning a new value and parameter naming, see Tips.
Nonlearnables
— Parameters unchanged during network trainingParameters unchanged during network training, specified as a structure. For example, padding and stride are parameters that stay constant during training.
Add a new parameter to params.Nonlearnables
by using addParameter
.
Remove a parameter from params.Nonlearnables
by using removeParameter
.
Access the fields of the structure Nonlearnables
by using dot
notation. For example, params.Nonlearnables.conv1_Padding
could
display the padding of the first convolution layer. For more details about parameter
naming, see Tips.
State
— Network state Network state, specified as a structure. The network State
contains information remembered by the network between iterations and updated across
multiple training batches. For example, the states of LSTM and batch normalization
layers are State
parameters.
Add a new parameter to params.State
by using addParameter
.
Remove a parameter from params.State
by using removeParameter
.
Access the fields of the structure State
by using dot notation.
For example, params.State.bn1_var
could display the variance of the
first batch normalization layer. For more details about parameter naming, see Tips.
NumDimensions
— Number of dimensions for every parameterThis property is read-only.
Number of dimensions for every parameter, specified as a structure.
NumDimensions
includes trailing singleton dimensions.
Access the fields of the structure NumDimensions
by using dot
notation. For example, params.NumDimensions.conv1_W
could display the
number of dimensions for the weights parameter of the first convolution layer.
NetworkFunctionName
— Name of model functionThis property is read-only.
Name of the model function, specified as a character vector or string scalar. The
property NetworkFunctionName
contains the name of the function
NetworkFunctionName
, which you specify in importONNXFunction
. The function NetworkFunctionName
contains the architecture of the imported ONNX network.
Example: 'shufflenetFcn'
addParameter | Add parameter to ONNXParameters object |
freezeParameters | Convert learnable network parameters in ONNXParameters to
nonlearnable |
removeParameter | Remove parameter from ONNXParameters object |
unfreezeParameters | Convert nonlearnable network parameters in ONNXParameters to
learnable |
Import the alexnet
convolution neural network as a function and fine-tune the pretrained network with transfer learning to perform classification on a new collection of images.
This example uses several helper functions. To view the code for these functions, see Helper Functions.
Unzip and load the new images as an image datastore. imageDatastore
automatically labels the images based on folder names and stores the data as an ImageDatastore
object. An image datastore enables you to store large image data, including data that does not fit in memory, and efficiently read batches of images during training of a convolutional neural network. Specify the mini-batch size.
unzip('MerchData.zip'); miniBatchSize = 8; imds = imageDatastore('MerchData', ... 'IncludeSubfolders',true, ... 'LabelSource','foldernames',... 'ReadSize', miniBatchSize);
This data set is small, containing 75 training images. Display some sample images.
numImages = numel(imds.Labels); idx = randperm(numImages,16); figure for i = 1:16 subplot(4,4,i) I = readimage(imds,idx(i)); imshow(I) end
Extract the training set and one-hot encode the categorical classification labels.
XTrain = readall(imds); XTrain = single(cat(4,XTrain{:})); YTrain_categ = categorical(imds.Labels); YTrain = onehotencode(YTrain_categ,2)';
Determine the number of classes in the data.
classes = categories(YTrain_categ); numClasses = numel(classes)
numClasses = 5
AlexNet is a convolutional neural network that is trained on more than a million images from the ImageNet database. As a result, the network has learned rich feature representations for a wide range of images. The network can classify images into 1000 object categories, such as keyboard, mouse, pencil, and many animals.
Import the pretrained alexnet
network as a function.
alexnetONNX() params = importONNXFunction('alexnet.onnx','alexnetFcn')
A function containing the imported ONNX network has been saved to the file alexnetFcn.m. To learn how to use this function, type: help alexnetFcn.
params = ONNXParameters with properties: Learnables: [1×1 struct] Nonlearnables: [1×1 struct] State: [1×1 struct] NumDimensions: [1×1 struct] NetworkFunctionName: 'alexnetFcn'
params
is an ONNXParameters
object that contains the network parameters. alexnetFcn
is a model function that contains the network architecture. importONNXFunction
saves alexnetFcn
in the current folder.
Calculate the classification accuracy of the pretrained network on the new training set.
accuracyBeforeTraining = getNetworkAccuracy(XTrain,YTrain,params);
fprintf('%.2f accuracy before transfer learning\n',accuracyBeforeTraining);
0.01 accuracy before transfer learning
The accuracy is very low.
Display the learnable parameters of the network. These parameters, for example the weights (W
) and bias (B
) of convolution and fully connected layers, are updated by the network during training. Nonlearnable parameters remain constant during training.
params.Learnables
ans = struct with fields:
data_Mean: [227×227×3 dlarray]
conv1_W: [11×11×3×96 dlarray]
conv1_B: [96×1 dlarray]
conv2_W: [5×5×48×256 dlarray]
conv2_B: [256×1 dlarray]
conv3_W: [3×3×256×384 dlarray]
conv3_B: [384×1 dlarray]
conv4_W: [3×3×192×384 dlarray]
conv4_B: [384×1 dlarray]
conv5_W: [3×3×192×256 dlarray]
conv5_B: [256×1 dlarray]
fc6_W: [6×6×256×4096 dlarray]
fc6_B: [4096×1 dlarray]
fc7_W: [1×1×4096×4096 dlarray]
fc7_B: [4096×1 dlarray]
fc8_W: [1×1×4096×1000 dlarray]
fc8_B: [1000×1 dlarray]
The last two learnable parameters of the pretrained network are configured for 1000 classes. The parameters fc8_W
and fc8_B
must be fine-tuned for the new classification problem. Transfer the parameters to classify 5 classes by initializing them.
params.Learnables.fc8_B = rand(5,1); params.Learnables.fc8_W = rand(1,1,4096,5);
Freeze all the parameters of the network to convert them to nonlearnable parameters. Because you do not need to compute the gradients of the frozen layers, freezing the weights of many initial layers can significantly speed up network training.
params = freezeParameters(params,'all');
Unfreeze the last two parameters of the network to convert them to learnable parameters.
params = unfreezeParameters(params,'fc8_W'); params = unfreezeParameters(params,'fc8_B');
Now the network is ready for training. Initialize the training progress plot.
plots = "training-progress"; if plots == "training-progress" figure lineLossTrain = animatedline; xlabel("Iteration") ylabel("Loss") end
Specify the training options.
velocity = []; numEpochs = 5; miniBatchSize = 16; numObservations = size(YTrain,2); numIterationsPerEpoch = floor(numObservations./miniBatchSize); initialLearnRate = 0.01; momentum = 0.9; decay = 0.01;
Train the network.
iteration = 0; start = tic; executionEnvironment = "cpu"; % Change to "gpu" to train on a GPU. % Loop over epochs. for epoch = 1:numEpochs % Shuffle data. idx = randperm(numObservations); XTrain = XTrain(:,:,:,idx); YTrain = YTrain(:,idx); % Loop over mini-batches. for i = 1:numIterationsPerEpoch iteration = iteration + 1; % Read mini-batch of data. idx = (i-1)*miniBatchSize+1:i*miniBatchSize; X = XTrain(:,:,:,idx); Y = YTrain(:,idx); % If training on a GPU, then convert data to gpuArray. if (executionEnvironment == "auto" && canUseGPU) || executionEnvironment == "gpu" X = gpuArray(X); end % Evaluate the model gradients and loss using dlfeval and the % modelGradients function. [gradients,loss,state] = dlfeval(@modelGradients,X,Y,params); params.State = state; % Determine learning rate for time-based decay learning rate schedule. learnRate = initialLearnRate/(1 + decay*iteration); % Update the network parameters using the SGDM optimizer. [params.Learnables,velocity] = sgdmupdate(params.Learnables,gradients,velocity); % Display the training progress. if plots == "training-progress" D = duration(0,0,toc(start),'Format','hh:mm:ss'); addpoints(lineLossTrain,iteration,double(gather(extractdata(loss)))) title("Epoch: " + epoch + ", Elapsed: " + string(D)) drawnow end end end
Calculate the classification accuracy of the network after fine-tuning.
accuracyAfterTraining = getNetworkAccuracy(XTrain,YTrain,params);
fprintf('%.2f accuracy after transfer learning\n',accuracyAfterTraining);
0.99 accuracy after transfer learning
Helper Functions
This section provides the code of the helper functions used in this example.
The getNetworkAccuracy
function evaluates the network performance by calculating the classification accuracy.
function accuracy = getNetworkAccuracy(X,Y,onnxParams) N = size(X,4); Ypred = alexnetFcn(X,onnxParams,'Training',false); [~,YIdx] = max(Y,[],1); [~,YpredIdx] = max(Ypred,[],1); numIncorrect = sum(abs(YIdx-YpredIdx) > 0); accuracy = 1 - numIncorrect/N; end
The modelGradients
function calculates the loss and gradients.
function [grad, loss, state] = modelGradients(X,Y,onnxParams) [y,state] = alexnetFcn(X,onnxParams,'Training',true); loss = crossentropy(y,Y,'DataFormat','CB'); grad = dlgradient(loss,onnxParams.Learnables); end
The alexnetONNX
function generates an ONNX model of the alexnet
network. You need Deep Learning Toolbox Model for AlexNet Network support to access this model.
function alexnetONNX() exportONNXNetwork(alexnet,'alexnet.onnx'); end
Import a network saved in the ONNX format as a function, and move the mislabeled parameters by using freeze
or unfreeze
.
Create an ONNX model from the pretrained alexnet
network. Then import alexnet.onnx
as a function. Import the pretrained ONNX network using importONNXFunction
, which returns an ONNXParamaters
object that contains the network parameters. The function also creates a new model function in the current folder that contains the network architecture. Specify the name of the model function as alexnetFcn
.
net = alexnet; exportONNXNetwork(net,'alexnet.onnx'); params = importONNXFunction('alexnet.onnx','alexnetFcn');
A function containing the imported ONNX network has been saved to the file alexnetFcn.m. To learn how to use this function, type: help alexnetFcn.
importONNXFunction
labels the parameters of the imported network as Learnables
(parameters that are updated during training) or Nonlearnables
(parameters that remain unchanged during training). The labeling is not always accurate. A recommended practice is to check if the parameters are assigned to the correct structure params.Learnables
or params.Nonlearnables
. Display the learnable and nonlearnable parameters of the imported network.
params.Learnables
ans = struct with fields:
data_Mean: [227×227×3 dlarray]
conv1_W: [11×11×3×96 dlarray]
conv1_B: [96×1 dlarray]
conv2_W: [5×5×48×256 dlarray]
conv2_B: [256×1 dlarray]
conv3_W: [3×3×256×384 dlarray]
conv3_B: [384×1 dlarray]
conv4_W: [3×3×192×384 dlarray]
conv4_B: [384×1 dlarray]
conv5_W: [3×3×192×256 dlarray]
conv5_B: [256×1 dlarray]
fc6_W: [6×6×256×4096 dlarray]
fc6_B: [4096×1 dlarray]
fc7_W: [1×1×4096×4096 dlarray]
fc7_B: [4096×1 dlarray]
fc8_W: [1×1×4096×1000 dlarray]
fc8_B: [1000×1 dlarray]
params.Nonlearnables
ans = struct with fields:
conv1_Stride: [1×2 dlarray]
conv1_DilationFactor: [1×2 dlarray]
conv1_Padding: [1×1 dlarray]
pool1_PoolSize: [1×2 dlarray]
pool1_Stride: [1×2 dlarray]
pool1_Padding: [1×1 dlarray]
conv2_Stride: [1×2 dlarray]
conv2_DilationFactor: [1×2 dlarray]
conv2_Padding: [2×2 dlarray]
pool2_PoolSize: [1×2 dlarray]
pool2_Stride: [1×2 dlarray]
pool2_Padding: [1×1 dlarray]
conv3_Stride: [1×2 dlarray]
conv3_DilationFactor: [1×2 dlarray]
conv3_Padding: [2×2 dlarray]
conv4_Stride: [1×2 dlarray]
conv4_DilationFactor: [1×2 dlarray]
conv4_Padding: [2×2 dlarray]
conv5_Stride: [1×2 dlarray]
conv5_DilationFactor: [1×2 dlarray]
conv5_Padding: [2×2 dlarray]
pool5_PoolSize: [1×2 dlarray]
pool5_Stride: [1×2 dlarray]
pool5_Padding: [1×1 dlarray]
fc6_Stride: [1×2 dlarray]
fc6_DilationFactor: [1×2 dlarray]
fc6_Padding: [1×1 dlarray]
fc7_Stride: [1×2 dlarray]
fc7_DilationFactor: [1×2 dlarray]
fc7_Padding: [1×1 dlarray]
fc8_Stride: [1×2 dlarray]
fc8_DilationFactor: [1×2 dlarray]
fc8_Padding: [1×1 dlarray]
Note that params.Learnables
contains the parameter data_Mean
, which should remain unchanged during training. Convert data_Mean
to a nonlearnable parameter. The freezeParameters
function removes the parameter data_Mean
from param.Learnables
and adds it to params.Nonlearnables
sequentially.
params = freezeParameters(params,'data_Mean');
Display the updated learnable and nonlearnable parameters.
params.Learnables
ans = struct with fields:
conv1_W: [11×11×3×96 dlarray]
conv1_B: [96×1 dlarray]
conv2_W: [5×5×48×256 dlarray]
conv2_B: [256×1 dlarray]
conv3_W: [3×3×256×384 dlarray]
conv3_B: [384×1 dlarray]
conv4_W: [3×3×192×384 dlarray]
conv4_B: [384×1 dlarray]
conv5_W: [3×3×192×256 dlarray]
conv5_B: [256×1 dlarray]
fc6_W: [6×6×256×4096 dlarray]
fc6_B: [4096×1 dlarray]
fc7_W: [1×1×4096×4096 dlarray]
fc7_B: [4096×1 dlarray]
fc8_W: [1×1×4096×1000 dlarray]
fc8_B: [1000×1 dlarray]
params.Nonlearnables
ans = struct with fields:
conv1_Stride: [1×2 dlarray]
conv1_DilationFactor: [1×2 dlarray]
conv1_Padding: [1×1 dlarray]
pool1_PoolSize: [1×2 dlarray]
pool1_Stride: [1×2 dlarray]
pool1_Padding: [1×1 dlarray]
conv2_Stride: [1×2 dlarray]
conv2_DilationFactor: [1×2 dlarray]
conv2_Padding: [2×2 dlarray]
pool2_PoolSize: [1×2 dlarray]
pool2_Stride: [1×2 dlarray]
pool2_Padding: [1×1 dlarray]
conv3_Stride: [1×2 dlarray]
conv3_DilationFactor: [1×2 dlarray]
conv3_Padding: [2×2 dlarray]
conv4_Stride: [1×2 dlarray]
conv4_DilationFactor: [1×2 dlarray]
conv4_Padding: [2×2 dlarray]
conv5_Stride: [1×2 dlarray]
conv5_DilationFactor: [1×2 dlarray]
conv5_Padding: [2×2 dlarray]
pool5_PoolSize: [1×2 dlarray]
pool5_Stride: [1×2 dlarray]
pool5_Padding: [1×1 dlarray]
fc6_Stride: [1×2 dlarray]
fc6_DilationFactor: [1×2 dlarray]
fc6_Padding: [1×1 dlarray]
fc7_Stride: [1×2 dlarray]
fc7_DilationFactor: [1×2 dlarray]
fc7_Padding: [1×1 dlarray]
fc8_Stride: [1×2 dlarray]
fc8_DilationFactor: [1×2 dlarray]
fc8_Padding: [1×1 dlarray]
data_Mean: [227×227×3 dlarray]
The following rules apply when you assign a new value to a
params.Learnables
parameter:
The software automatically converts the new value to a dlarray
.
The new value must be compatible with the existing value of
params.NumDimensions
.
importONNXFunction
derives the field names of the structures
Learnables
, Nonlearnables
, and
State
from the names in the imported ONNX model file. The field names
might differ between imported networks.
You have a modified version of this example. Do you want to open this example with your edits?