Create an object of class workflow
by using the
dlhdl.Workflow
class.
Set the deep learning and bitstream for the workflow object.
Call the estimate
function for the workflow object.
The speed and latency are stored in a structure struct
and
displayed on the screen.
For example:
snet = vgg19; hW = dlhdl.Workflow('Network', snet, 'Bitstream', 'arria10soc_single'); result = hW.estimate('Performance');
The result of the estimation is:
Deep Learning Processor Estimator Performance Results LastLayerLatency(cycles) LastLayerLatency(seconds) FramesNum Total Latency Frames/s ------------- ------------- --------- --------- --------- Network 172441964 1.14961 1 172441964 0.9 conv_module 162622207 1.08415 conv1_1 4528942 0.03019 conv1_2 17788981 0.11859 pool1 2360417 0.01574 conv2_1 8510437 0.05674 conv2_2 15432208 0.10288 pool2 1242064 0.00828 conv3_1 7660645 0.05107 conv3_2 14177125 0.09451 conv3_3 14177125 0.09451 conv3_4 14177125 0.09451 pool3 671713 0.00448 conv4_1 6957812 0.04639 conv4_2 13621492 0.09081 conv4_3 13621492 0.09081 conv4_4 13621492 0.09081 pool4 391652 0.00261 conv5_1 3396733 0.02264 conv5_2 3396733 0.02264 conv5_3 3396733 0.02264 conv5_4 3396733 0.02264 pool5 94553 0.00063 fc_module 9819757 0.06547 fc6 8160258 0.05440 fc7 1331586 0.00888 fc8 327913 0.00219 * The clock frequency of the DL processor is: 150MHz