Package: dlhdl
Configure deployment workflow for deep learning neural network
Use the dlhdl.Workflow
object to set options for compiling and deploying
your deep learning network to a target FPGA. You create an object of the
dlhdl.Workflow
class for the specified deep learning network and FPGA
bitstream. Use the object to:
Compile the deep learning network.
Estimate the speed and throughput of your network on the specified FPGA device.
Compile and deploy the neural network onto the FPGA.
Predict the class of input images.
Profile the results for the specified network and the FPGA.
dlhdl.Workflow
creates a workflow configuration object for you to specify
the workflow to deploy your trained series network.
dlhdl.Workflow (Name,Value)
creates a workflow configuration object for you
to specify the workflow to deploy your trained deep learning network, with additional options
specified by one or more name-value pair arguments.
snet = vgg19; hW = dlhdl.Workflow('Network',snet,'Bitstream','arria10soc_single', 'Target', hTarget');
snet = vgg19; hW = dlhdl.Workflow('Network',snet,'Bitstream','myfile.bit', 'Target', hTarget);
snet = getLogoNetwork(); dlquantObj = dlquantizer(snet,'ExecutionEnvironment','FPGA'); Image = imageDatastore('heineken.png','Labels','Heineken'); dlquantizeObj.calibrate(Image); hTarget = dlhdl.Target('Xilinx','Interface','Ethernet'); hW = dlhdl.Workflow('Network',dlquantizeObj,'Bitstream','zcu102_int8','Target',hTarget);