Communications Toolbox™ provides algorithms and apps for the analysis, design, end-to-end simulation, and verification of communications systems. Toolbox algorithms including channel coding, modulation, MIMO, and OFDM enable you to compose and simulate a physical layer model of your standard-based or custom-designed wireless communications system.
The toolbox provides a waveform generator app, constellation and eye diagrams, bit-error-rate, and other analysis tools and scopes for validating your designs. These tools enable you to generate and analyze signals, visualize channel characteristics, and obtain performance metrics such as error vector magnitude (EVM). The toolbox includes SISO and MIMO statistical and spatial channel models. Channel profile options include Rayleigh, Rician, and WINNER II models. It also includes RF impairments, including RF nonlinearity and carrier offset and compensation algorithms, including carrier and symbol timing synchronizers. These algorithms enable you to realistically model link-level specifications and compensate for the effects of channel degradations.
Using Communications Toolbox with RF instruments or hardware support packages, you can connect your transmitter and receiver models to radio devices and verify your designs with over-the-air testing.
Learn the basics of Communications Toolbox
Physical layer features including waveform generation, source coding, error control coding, modulation, MIMO, space-time coding, filtering, equalization, and synchronization
Behavioral RF radio modeling and impairment correction
Site and terrain visualization, propagation model specification (including Longley-Rice), signal strength, signal coverage maps, and static and fading channel models
Link-level communications systems simulation and analysis examples
DLL, MAC sublayer, and LLC sublayer examples
System models compliant with various standards
Waveform generation, visualization, and performance analysis
Use deep learning in wireless communications systems
Generate standalone applications for desktop computers and embedded targets
Support for third-party software-defined radio hardware, such as Xilinx®, RTL-SDR, ADALM-PLUTO, and USRP™ radios