You can use Deep Learning Toolbox™ features in wireless communications systems to help train reception algorithms.
Prerequisites for Deep Learning with MATLAB Coder (MATLAB Coder)
Use a convolutional neural network (CNN) for modulation classification. You generate synthetic, channel-impaired waveforms. Using the generated waveforms as training data, you train a CNN for modulation classification. You then test the CNN with software-defined radio (SDR) hardware and over-the-air signals.
Design a radio frequency (RF) fingerprinting convolutional neural network (CNN) with simulated data. You train the CNN with simulated wireless local area network (WLAN) beacon frames from known and unknown routers for RF fingerprinting. You then compare the media access control (MAC) address of received signals and the RF fingerprint detected by the CNN to detect WLAN router impersonators.
Train a radio frequency (RF) fingerprinting convolutional neural network (CNN) with captured data. You capture wireless local area network (WLAN) beacon frames from real routers using a software defined radio (SDR). You program a second SDR to transmit unknown beacon frames and capture them. You train the CNN using these captured signals. You then program a software-defined radio (SDR) as a router impersonator that transmits beacon signals with the media access control (MAC) address of one of the known routers and use the CNN to identify it as an impersonator.
Generate signals and channel impairments to train a neural network, called LLRNet, to estimate exact log likelihood ratios (LLR).
Generate deep learning training data for channel estimation using 5G Toolbox™.