Augment audio data
Enlarge your audio dataset using audio-specific augmentation techniques like pitch shifting, time-scale modification, time shifting, noise addition, and volume control. You can create cascaded or parallel augmentation pipelines to apply multiple algorithms deterministically or probabilistically.
creates an audio
data augmenter object with default property values.aug
= audioDataAugmenter()
specifies nondefault properties for aug
= audioDataAugmenter(Name,Value
)aug
using one or more name-value
pair arguments.
AugmentationMode
— Augmentation mode'sequential'
(default) | 'independent'
Augmentation mode, specified as 'sequential'
or
'independent'
.
'sequential'
–– Augmentation algorithms are applied
sequentially (in series).
'independent'
–– Augmentation algorithms are applied
independently (in parallel).
Data Types: char
| string
AugmentationParameterSource
— Source of augmentation parameters'random'
(default) | 'specify'
Source of augmentation parameters, specified as 'random'
or
'specify'
.
'random'
–– Augmentation algorithms are applied
probabilistically using a probability parameter and a range parameter.
For example, to create an audioDataAugmenter
that applies
time-stretching using a speedup factor between 0.5
and
1.5
with a 60% probability, enter the following in the
Command
Window:
aug = audioDataAugmenter('AugmentationParameterSource','random', ... 'TimeStretchProbability',0.6, ... 'SpeedupFactorRange',[0.5,1.5]);
0.5
and a maximum of 1.5
.'specify'
–– Augmentation algorithms are applied
deterministically using a logical parameter and a specified parameter value. For
example, to create an audioDataAugmenter
that applies
time-stretching using a 1.5
speedup factor with a 100%
probability, enter the following in the Command
Window:
aug = audioDataAugmenter('AugmentationParameterSource','specify', ... 'ApplyTimeStretch',true, ... 'SpeedupFactor',1.5);
Data Types: char
| string
NumAugmentations
— Number of augmented signals to output1
(default) | positive integerNumber of augmented signals to output, specified as a positive integer.
To enable this property, set AugmentationParameterSource to 'random'
.
Data Types: single
| double
| int8
| int16
| int32
| int64
| uint8
| uint16
| uint32
| uint64
TimeStretchProbability
— Probability of applying time stretch0.5
(default) | scalar in the range [0, 1]Probability of applying time stretch, specified as a scalar in the range [0, 1].
Set the probability to 1
to apply time stretching every time you
call augment
. Set
the probability to 0
to skip time stretching every time you call
augment
.
To enable this property, set AugmentationParameterSource to 'random'
and
AugmentationMode to 'sequential'
.
Data Types: single
| double
SpeedupFactorRange
— Range of time stretch speedup factor[0.8 1.2]
(default) | two-element row vector of positive nondecreasing valuesRange of time stretch speedup factor, specified as a two-element row vector of positive nondecreasing values.
To enable this property, set AugmentationParameterSource to 'random'
.
Data Types: single
| double
| int8
| int16
| int32
| int64
| uint8
| uint16
| uint32
| uint64
ApplyTimeStretch
— Apply time stretchtrue
(default) | false
Apply time stretch, specified as true
or
false
.
To enable this property, set AugmentationParameterSource to 'specify'
.
Data Types: logical
SpeedupFactor
— Time stretch speedup factor0.8
(default) | real positive scalar | real positive vectorTime stretch speedup factor, specified as a scalar or vector of real positive values.
To enable this property, set AugmentationParameterSource to 'specify'
.
Data Types: single
| double
| int8
| int16
| int32
| int64
| uint8
| uint16
| uint32
| uint64
PitchShiftProbability
— Probability of applying pitch shift0.5
(default) | scalar in the range [0, 1]Probability of applying pitch shift, specified as a scalar in the range [0, 1].
Set the probability to 1
to apply pitch shifting every time you
call augment
. Set
the probability to 0
to skip pitch shifting every time you call
augment
.
To enable this property, set AugmentationParameterSource to 'random'
and
AugmentationMode to 'sequential'
.
Data Types: single
| double
SemitoneShiftRange
— Range of pitch shift (semitones)[-2,2]
(default) | two-element row vector of nondecreasing valuesRange of pitch shift in semitones, specified as a two-element row vector of nondecreasing values.
To enable this property, set AugmentationParameterSource to 'random'
.
Data Types: single
| double
| int8
| int16
| int32
| int64
| uint8
| uint16
| uint32
| uint64
ApplyPitchShift
— Apply pitch shifttrue
(default) | false
Apply pitch shift, specified as true
or
false
.
To enable this property, set AugmentationParameterSource to 'specify'
.
Data Types: logical
SemitoneShift
— Pitch shift (semitones)-3
(default) | real scalar | real vectorPitch shift in semitones, specified as a real scalar or vector.
To enable this property, set AugmentationParameterSource to 'specify'
.
Data Types: single
| double
| int8
| int16
| int32
| int64
| uint8
| uint16
| uint32
| uint64
VolumeControlProbability
— Probability of applying volume control0.5
(default) | scalar in the range [0, 1]Probability of applying volume control, specified as a scalar in the range [0, 1].
Set the probability to 1
to apply volume control every time you
call augment
. Set
the probability to 0
to skip volume control every time you call
augment
.
To enable this property, set AugmentationParameterSource to 'random'
and
AugmentationMode to 'sequential'
.
Data Types: single
| double
VolumeGainRange
— Range of volume gain (dB)[-3,3]
(default) | two-element row vector of nondecreasing valuesRange of volume gain in dB, specified as a two-element row vector of nondecreasing values.
To enable this property, set AugmentationParameterSource to 'random'
.
Data Types: single
| double
| int8
| int16
| int32
| int64
| uint8
| uint16
| uint32
| uint64
ApplyVolumeControl
— Apply volume gaintrue
(default) | false
Apply volume gain, specified as true
or
false
.
To enable this property, set AugmentationParameterSource to 'specify'
.
Data Types: logical
VolumeGain
— Volume gain (dB)-3
(default) | scalar | vectorVolume gain in dB, specified as a scalar or vector.
Data Types: single
| double
| int8
| int16
| int32
| int64
| uint8
| uint16
| uint32
| uint64
AddNoiseProbability
— Probability of applying noise addition0.5
(default) | scalar in the range [0, 1]Probability of applying Gaussian white noise addition, specified as a scalar in
the range [0, 1]. Set the probability to 1
to add noise every time
you call augment
. Set
the probability to 0
to skip adding noise every time you call
augment
.
To enable this property, set AugmentationParameterSource to 'random'
and
AugmentationMode to 'sequential'
.
Data Types: single
| double
SNRRange
— Range of noise addition SNR (dB)[0,10]
(default) | two-element row vector of nondecreasing valuesRange of noise addition SNR in dB, specified as a two-element row vector of nondecreasing values.
To enable this property, set AugmentationParameterSource to 'range'
.
Data Types: single
| double
| int8
| int16
| int32
| int64
| uint8
| uint16
| uint32
| uint64
ApplyAddNoise
— Apply noise additiontrue
(default) | false
Apply Gaussian white noise addition, specified as true
or
false
.
To enable this property, set AugmentationParameterSource to 'specify'
.
Data Types: logical
SNR
— Noise addition SNR (dB)5
(default) | scalar | vectorNoise addition SNR in dB, specified as a scalar or vector.
Data Types: single
| double
| int8
| int16
| int32
| int64
| uint8
| uint16
| uint32
| uint64
TimeShiftProbability
— Probability of applying time shift0.5
(default) | scalar in the range [0, 1]Probability of applying time shift, specified as a scalar in the range [0, 1]. Set
the probability to 1
to apply time shifting every time you call
augment
. Set
the property to 0
to skip time shifting every time you call
augment
.
Time-shifting applies a circular shift on the time-domain audio data.
To enable this property, set AugmentationParameterSource to 'random'
and
AugmentationMode to 'sequential'
.
Data Types: single
| double
TimeShiftRange
— Range of time shift (s)[-5e-3,5e3]
(default) | two-element row vector of nondecreasing values.Range of time shift in seconds, specified as a two-element row vector of nondecreasing values.
To enable this property, set AugmentationParameterSource to 'random'
.
Data Types: single
| double
| int8
| int16
| int32
| int64
| uint8
| uint16
| uint32
| uint64
ApplyTimeShift
— Apply time shifttrue
(default) | false
Apply time shift, specified as true
or
false
.
To enable this property, set AugmentationParameterSource to 'specify'
.
Time-shifting applies a circular shift on the time-domain audio data.
Data Types: logical
TimeShift
— Time shift (s)5e-3
(default) | scalar | vectorTime shift in seconds, specified as a scalar or vector.
To enable this property, set AugmentationParameterSource to 'specify'
.
Data Types: single
| double
| int8
| int16
| int32
| int64
| uint8
| uint16
| uint32
| uint64
addAugmentationMethod | Add custom augmentation method |
removeAugmentationMethod | Remove custom augmentation method |
augment | Augment audio data |
Read in an audio signal and listen to it.
[audioIn,fs] = audioread("Counting-16-44p1-mono-15secs.wav");
sound(audioIn,fs)
Create an audioDataAugmenter
object that applies time stretching, volume control, and time shifting in cascade. Apply each of the augmentations with 80% probability. Set NumAugmentations
to 5
to output five independently augmented signals. To skip pitch shifting and noise addition for each augmentation, set the respective probabilities to 0
. Define parameter ranges for each relevant augmentation algorithm.
augmenter = audioDataAugmenter( ... "AugmentationMode","sequential", ... "NumAugmentations",5, ... ... "TimeStretchProbability",0.8, ... "SpeedupFactorRange", [1.3,1.4], ... ... "PitchShiftProbability",0, ... ... "VolumeControlProbability",0.8, ... "VolumeGainRange",[-5,5], ... ... "AddNoiseProbability",0, ... ... "TimeShiftProbability",0.8, ... "TimeShiftRange", [-500e-3,500e-3])
augmenter = audioDataAugmenter with properties: AugmentationMode: "sequential" AugmentationParameterSource: 'random' NumAugmentations: 5 TimeStretchProbability: 0.8000 SpeedupFactorRange: [1.3000 1.4000] PitchShiftProbability: 0 VolumeControlProbability: 0.8000 VolumeGainRange: [-5 5] AddNoiseProbability: 0 TimeShiftProbability: 0.8000 TimeShiftRange: [-0.5000 0.5000]
Call augment
on the audio to create 5 augmentations. The augmented audio is returned in a table with variables Audio
and AugmentationInfo
. The number of rows in the table is defined by NumAugmentations
.
data = augment(augmenter,audioIn,fs)
data=5×2 table
Audio AugmentationInfo
_________________ ________________
{685056x1 double} [1x1 struct]
{685056x1 double} [1x1 struct]
{505183x1 double} [1x1 struct]
{685056x1 double} [1x1 struct]
{490728x1 double} [1x1 struct]
In the current augmentation pipeline, augmentation parameters are assigned randomly from within the specified ranges. To determine the exact parameters used for an augmentation, inspect AugmentationInfo
.
augmentationToInspect =
4;
data.AugmentationInfo(augmentationToInspect)
ans = struct with fields:
SpeedupFactor: 1
VolumeGain: 4.3399
TimeShift: 0.4502
Listen to the augmentation you are inspecting. Plot time representation of the original and augmented signals.
augmentation = data.Audio{augmentationToInspect}; sound(augmentation,fs) t = (0:(numel(audioIn)-1))/fs; taug = (0:(numel(augmentation)-1))/fs; plot(t,audioIn,taug,augmentation) legend("Original Audio","Augmented Audio") ylabel("Amplitude") xlabel("Time (s)")
Read in an audio signal and listen to it.
[audioIn,fs] = audioread("Counting-16-44p1-mono-15secs.wav");
sound(audioIn,fs)
Create an audioDataAugmenter
object that applies time stretching, pitch shifting, and noise corruption in cascade. Specify the time stretch speedup factors as 0.9
, 1.1
, and 1.2
. Specify the pitch shifting in semitones as -2
, -1
, 1
, and 2
. Specify the noise corruption SNR as 10
dB and 15
dB.
augmenter = audioDataAugmenter( ... "AugmentationMode","sequential", ... "AugmentationParameterSource","specify", ... "SpeedupFactor",[0.9,1.1,1.2], ... "ApplyTimeStretch",true, ... "ApplyPitchShift",true, ... "SemitoneShift",[-2,-1,1,2], ... "SNR",[10,15], ... "ApplyVolumeControl",false, ... "ApplyTimeShift",false)
augmenter = audioDataAugmenter with properties: AugmentationMode: "sequential" AugmentationParameterSource: "specify" ApplyTimeStretch: 1 SpeedupFactor: [0.9000 1.1000 1.2000] ApplyPitchShift: 1 SemitoneShift: [-2 -1 1 2] ApplyVolumeControl: 0 ApplyAddNoise: 1 SNR: [10 15] ApplyTimeShift: 0
Call augment
on the audio to create 24 augmentations. The augmentations represent every combination of the specified augmentation parameters ().
data = augment(augmenter,audioIn,fs)
data=24×2 table
Audio AugmentationInfo
_________________ ________________
{761243x1 double} [1x1 struct]
{622888x1 double} [1x1 struct]
{571263x1 double} [1x1 struct]
{761243x1 double} [1x1 struct]
{622888x1 double} [1x1 struct]
{571263x1 double} [1x1 struct]
{761243x1 double} [1x1 struct]
{622888x1 double} [1x1 struct]
{571263x1 double} [1x1 struct]
{761243x1 double} [1x1 struct]
{622888x1 double} [1x1 struct]
{571263x1 double} [1x1 struct]
{761243x1 double} [1x1 struct]
{622888x1 double} [1x1 struct]
{571263x1 double} [1x1 struct]
{761243x1 double} [1x1 struct]
⋮
You can check the parameter configuration of each augmentation using the AugmentationInfo
table variable.
augmentationToInspect =
1;
data.AugmentationInfo(augmentationToInspect)
ans = struct with fields:
SpeedupFactor: 0.9000
SemitoneShift: -2
SNR: 10
Listen to the augmentation you are inspecting. Plot the time-domain representation of the original and augmented signals.
augmentation = data.Audio{augmentationToInspect}; sound(augmentation,fs) t = (0:(numel(audioIn)-1))/fs; taug = (0:(numel(augmentation)-1))/fs; plot(t,audioIn,taug,augmentation) legend("Original Audio","Augmented Audio") ylabel("Amplitude") xlabel("Time (s)")
Read in an audio signal and listen to it.
[audioIn,fs] = audioread("Counting-16-44p1-mono-15secs.wav");
Create an audioDataAugmenter
object that applies noise corruption, and time shifting in parallel branches. For the noise corruption branch, randomly apply noise with an SNR in the range 0
dB to 20
dB. For the time shifting branch, randomly apply time shifting in the range -300
ms to 300
ms. Apply augmentation 2 times for each branch, for 4 total augmentations.
augmenter = audioDataAugmenter( ... "AugmentationMode","independent", ... "AugmentationParameterSource","random", ... "NumAugmentations",2, ... "ApplyTimeStretch",false, ... "ApplyPitchShift",false, ... "ApplyVolumeControl",false, ... "SNRRange",[0,20], ... "TimeShiftRange",[-300e-3,300e-3])
augmenter = audioDataAugmenter with properties: AugmentationMode: "independent" AugmentationParameterSource: "random" NumAugmentations: 2 ApplyTimeStretch: 0 ApplyPitchShift: 0 ApplyVolumeControl: 0 ApplyAddNoise: 1 SNRRange: [0 20] ApplyTimeShift: 1 TimeShiftRange: [-0.3000 0.3000]
Call augment
on the audio to create 3 augmentations.
data = augment(augmenter,audioIn,fs);
You can check the parameter configuration of each augmentation using the AugmentatioInfo
table variable.
augmentationToInspect =
4;
data.AugmentationInfo{augmentationToInspect}
ans = struct with fields:
TimeShift: 0.0016
Listen to the audio you are inspecting. Plot the time-domain representation of the original and augmented signals.
augmentation = data.Audio{augmentationToInspect}; sound(augmentation,fs) t = (0:(numel(audioIn)-1))/fs; taug = (0:(numel(augmentation)-1))/fs; plot(t,audioIn,taug,augmentation) legend("Original Audio","Augmented Audio") ylabel("Amplitude") xlabel("Time (s)")
Read in an audio signal and listen to it.
[audioIn,fs] = audioread("Counting-16-44p1-mono-15secs.wav");
Create an audioDataAugmenter
object that applies volume control, noise corruption, and time shifting in parallel branches.
augmenter = audioDataAugmenter( ... "AugmentationMode","independent", ... "AugmentationParameterSource","specify", ... "ApplyTimeStretch",false, ... "ApplyPitchShift",false, ... "VolumeGain",2, ... "SNR",0, ... "TimeShift",2)
augmenter = audioDataAugmenter with properties: AugmentationMode: "independent" AugmentationParameterSource: "specify" ApplyTimeStretch: 0 ApplyPitchShift: 0 ApplyVolumeControl: 1 VolumeGain: 2 ApplyAddNoise: 1 SNR: 0 ApplyTimeShift: 1 TimeShift: 2
Call augment
on the audio to create 3 augmentations.
data = augment(augmenter,audioIn,fs)
data=3×2 table
Audio AugmentationInfo
_________________ ________________
{685056x1 double} {1x1 struct}
{685056x1 double} {1x1 struct}
{685056x1 double} {1x1 struct}
You can check the parameter configuration of each augmentation using the AugmentatioInfo
table variable.
augmentationToInspect =
3;
data.AugmentationInfo{augmentationToInspect}
ans = struct with fields:
TimeShift: 2
Listen to the audio you are inspecting. Plot the time-domain representations of the original and augmented signals.
augmentation = data.Audio{augmentationToInspect}; sound(augmentation,fs) t = (0:(numel(audioIn)-1))/fs; taug = (0:(numel(augmentation)-1))/fs; plot(t,audioIn,taug,augmentation) legend("Original Audio","Augmented Audio") ylabel("Amplitude") xlabel("Time (s)")
The audioDataAugmenter
supports multiple workflows for augmenting your datastore, including:
Offline augmentation
Augmentation using tall arrays
Augmentation using transform datastores
In each workflow, begin by creating an audio datastore to point to your audio data. In this example, you create an audio datastore that points to audio samples included with Audio Toolbox™. Count the number of files in the dataset.
folder = fullfile(matlabroot,"toolbox","audio","samples"); ADS = audioDatastore(folder)
ADS = audioDatastore with properties: Files: { ' ...\matlab\toolbox\audio\samples\Ambiance-16-44p1-mono-12secs.wav'; ' ...\matlab\toolbox\audio\samples\AudioArray-16-16-4channels-20secs.wav'; ' ...\toolbox\audio\samples\ChurchImpulseResponse-16-44p1-mono-5secs.wav' ... and 26 more } AlternateFileSystemRoots: {} OutputDataType: 'double' Labels: {}
numFilesInDataset = numel(ADS.Files)
numFilesInDataset = 29
Create an audioDataAugmenter
that applies random sequential augmentations. Set NumAugmentations
to 2
.
aug = audioDataAugmenter('NumAugmentations',2)
aug = audioDataAugmenter with properties: AugmentationMode: 'sequential' AugmentationParameterSource: 'random' NumAugmentations: 2 TimeStretchProbability: 0.5000 SpeedupFactorRange: [0.8000 1.2000] PitchShiftProbability: 0.5000 SemitoneShiftRange: [-2 2] VolumeControlProbability: 0.5000 VolumeGainRange: [-3 3] AddNoiseProbability: 0.5000 SNRRange: [0 10] TimeShiftProbability: 0.5000 TimeShiftRange: [-0.0050 0.0050]
Offline Augmentation
To augment the audio dataset, create two augmentations of each file and then write the augmentations as WAV files.
while hasdata(ADS) [audioIn,info] = read(ADS); data = augment(aug,audioIn,info.SampleRate); [~,fn] = fileparts(info.FileName); for i = 1:size(data,1) augmentedAudio = data.Audio{i}; % If augmentation caused an audio signal to have values outside of -1 and 1, % normalize the audio signal to avoid clipping when writing. if max(abs(augmentedAudio),[],'all')>1 augmentedAudio = augmentedAudio/max(abs(augmentedAudio),[],'all'); end audiowrite(sprintf('%s_aug%d.wav',fn,i),augmentedAudio,info.SampleRate) end end
Create an audioDatastore
that points to the augmented dataset and confirm that the number of files in the dataset is double the original number of files.
augmentedADS = audioDatastore(pwd)
augmentedADS = audioDatastore with properties: Files: { ' ...\Examples\audio-ex28074079\Ambiance-16-44p1-mono-12secs_aug1.wav'; ' ...\Examples\audio-ex28074079\Ambiance-16-44p1-mono-12secs_aug2.wav'; ' ...\Examples\audio-ex28074079\AudioArray-16-16-4channels-20secs_aug1.wav' ... and 55 more } AlternateFileSystemRoots: {} OutputDataType: 'double' Labels: {}
numFilesInAugmentedDataset = numel(augmentedADS.Files)
numFilesInAugmentedDataset = 58
Augment Using Tall Arrays
When augmenting a dataset using tall arrays, the input data to the augmenter should be sampled at a consistent rate. Subset the original audio dataset to only include files with a sample rate of 44.1 kHz. Most datasets are already cleaned to have a consistent sample rate.
keepFile = cellfun(@(x)contains(x,'44p1'),ADS.Files);
ads44p1 = subset(ADS,keepFile);
fs = 44.1e3;
Convert the audio datastore to a tall array. tall
arrays are evaluated only when you request them explicitly using gather
. MATLAB® automatically optimizes the queued calculations by minimizing the number of passes through the data. If you have the Parallel Computing Toolbox™, you can spread the calculations across multiple machines. The audio data is represented as an M-by-1 tall cell array, where M is the number of files in the audio datastore.
adsTall = tall(ads44p1)
Starting parallel pool (parpool) using the 'local' profile ... Connected to the parallel pool (number of workers: 6). adsTall = M×1 tall cell array { 539648×1 double} { 227497×1 double} { 8000×1 double} { 685056×1 double} { 882688×2 double} {1115760×2 double} { 505200×2 double} {3195904×2 double} : : : :
Define a cellfun
function so that augmentation is applied to each cell of the tall array. Call gather
to evaluate the tall array.
augTall = cellfun(@(x)augment(aug,x,fs),adsTall,"UniformOutput",false);
augmentedDataset = gather(augTall)
Evaluating tall expression using the Parallel Pool 'local': - Pass 1 of 1: Completed in 1 min 34 sec Evaluation completed in 1 min 34 sec
augmentedDataset=12×1 cell array
{2×2 table}
{2×2 table}
{2×2 table}
{2×2 table}
{2×2 table}
{2×2 table}
{2×2 table}
{2×2 table}
{2×2 table}
{2×2 table}
{2×2 table}
{2×2 table}
The augmented dataset is returned as a numFiles-by-1 cell array, where numFiles is the number of files in the datastore. Each element of the cell array is a numAugmentationsPerFile-by-2 table, where numAugmentationsPerFile is the number of augmentations returned per file.
numFiles = numel(augmentedDataset)
numFiles = 12
numAugmentationsPerFile = size(augmentedDataset{1},1)
numAugmentationsPerFile = 2
Augment Using Transform Datastore
You can perform online data augmentation while you train your machine learning application using a transform datastore. Call transform
to create a new datastore that applies data augmentation while reading.
transformADS = transform(ADS,@(x,info)augment(aug,x,info),'IncludeInfo',true)
transformADS = TransformedDatastore with properties: UnderlyingDatastore: [1×1 audioDatastore] Transforms: {@(x,info)augment(aug,x,info)} IncludeInfo: 1
Call read
to return the augmented first file from the transform datastore.
augmentedRead = read(transformADS)
augmentedRead=2×2 table
Audio AugmentationInfo
_________________ ________________
{539648×1 double} [1×1 struct]
{586683×1 double} [1×1 struct]
You can expand the capabilities of audioDataAugmenter
by adding custom augmentation methods.
Read in an audio signal and listen to it.
[audioIn,fs] = audioread('Counting-16-44p1-mono-15secs.wav');
sound(audioIn,fs)
Create an audioDataAugmenter
object. Set the probability of applying white noise to 0
.
augmenter = audioDataAugmenter('AddNoiseProbability',0)
augmenter = audioDataAugmenter with properties: AugmentationMode: 'sequential' AugmentationParameterSource: 'random' NumAugmentations: 1 TimeStretchProbability: 0.5000 SpeedupFactorRange: [0.8000 1.2000] PitchShiftProbability: 0.5000 SemitoneShiftRange: [-2 2] VolumeControlProbability: 0.5000 VolumeGainRange: [-3 3] AddNoiseProbability: 0 TimeShiftProbability: 0.5000 TimeShiftRange: [-0.0050 0.0050]
Specify a custom augmentation algorithm that applies pink noise. The AddPinkNoise
algorithm is added to the augmenter
properties.
algorithmName = 'AddPinkNoise'; algorithmHandle = @(x)x+pinknoise(size(x),'like',x); addAugmentationMethod(augmenter,algorithmName,algorithmHandle) augmenter
augmenter = audioDataAugmenter with properties: AugmentationMode: 'sequential' AugmentationParameterSource: 'random' NumAugmentations: 1 TimeStretchProbability: 0.5000 SpeedupFactorRange: [0.8000 1.2000] PitchShiftProbability: 0.5000 SemitoneShiftRange: [-2 2] VolumeControlProbability: 0.5000 VolumeGainRange: [-3 3] AddNoiseProbability: 0 TimeShiftProbability: 0.5000 TimeShiftRange: [-0.0050 0.0050] AddPinkNoiseProbability: 0.5000
Set the probability of adding pink noise to 1
.
augmenter.AddPinkNoiseProbability = 1
augmenter = audioDataAugmenter with properties: AugmentationMode: 'sequential' AugmentationParameterSource: 'random' NumAugmentations: 1 TimeStretchProbability: 0.5000 SpeedupFactorRange: [0.8000 1.2000] PitchShiftProbability: 0.5000 SemitoneShiftRange: [-2 2] VolumeControlProbability: 0.5000 VolumeGainRange: [-3 3] AddNoiseProbability: 0 TimeShiftProbability: 0.5000 TimeShiftRange: [-0.0050 0.0050] AddPinkNoiseProbability: 1
Augment the original signal and listen to the result. Inspect parameters of the augmentation algorithms applied.
data = augment(augmenter,audioIn,fs); sound(data.Audio{1},fs) data.AugmentationInfo(1)
ans = struct with fields:
SpeedupFactor: 1
SemitoneShift: 0
VolumeGain: 2.4803
TimeShift: -0.0022
AddPinkNoise: 'Applied'
Plot the mel spectrograms of the original and augmented signals.
melSpectrogram(audioIn,fs)
title('Original Signal')
melSpectrogram(data.Audio{1},fs)
title('Augmented Signal')
The audioDataAugmenter
object enables you to configure your augmentation
pipeline as deterministic or probabilistic using the AugmentationParameterSource property. You can also choose to apply the
augmentations in series or in parallel using the AugmentationMode
property. The following sections describe the pipelines you can create and the applicable
properties for each architecture.
To define your augmentation as a sequence of probabilistically applied augmentations,
set AugmentationParameterSource to 'random'
and AugmentationMode
to 'sequential'
.
The order that augmentations are applied is always the same. If you specify custom algorithms, they are applied at the end of the sequence, in the order you specified them.
In this pipeline configuration, these parameters apply:
Augmentation Method | Parameters |
---|---|
Stretch Time | |
Shift Pitch | |
Control Volume | |
Add Noise | |
Shift Time |
If you specify NumAugmentations
as greater than 1, then the object applies NumAugmentations
parallel
random sequential augmentations. The probability of applying an augmentation, and the value
of any parameters that are probabilistically determined, are independent.
To define your augmentation as a sequence of deterministically applied augmentations,
set AugmentationParameterSource to 'specify'
and AugmentationMode
to 'sequential'
.
The order that augmentations are applied is always the same. If you specify custom algorithms, they are applied at the end of the sequence, in the order you specified them.
In this pipeline configuration, these parameters apply:
Augmentation Method | Parameters |
---|---|
Stretch Time | |
Shift Pitch | |
Control Volume | |
Add Noise | |
Shift Time |
If you specify an augmentation method as a vector, then each element of the vector creates a separate branch in the augmentation pipeline. For example, the following object creates an augmentation pipeline that results in four separate augmentations:
aug = audioDataAugmenter("AugmentationMode","sequential", ... "AugmentationParameterSource","specify", ... "SpeedupFactor",[0.8,1.2], ... "VolumeGain",[-3,-1])
aug = audioDataAugmenter with properties: AugmentationMode: "sequential" AugmentationParameterSource: "specify" ApplyTimeStretch: 1 SpeedupFactor: [0.8000 1.2000] ApplyPitchShift: 1 SemitoneShift: -3 ApplyVolumeControl: 1 VolumeGain: [-3 -1] ApplyAddNoise: 1 SNR: 5 ApplyTimeShift: 1 TimeShift: 0.0050
To define your augmentation as independently applied augmentations with randomly
determined parameters, set AugmentationParameterSource to 'random'
and AugmentationMode
to 'independent'
.
In this pipeline configuration, these parameters apply:
Augmentation Method | Parameters |
---|---|
Stretch Time | |
Shift Pitch | |
Control Volume | |
Add Noise | |
Shift Time |
If you specify NumAugmentations
as greater than 1, then the object applies NumAugmentations
parallel
random independent augmentations. The value of any parameters that are probabilistically
determined are independent.
To define your augmentation as deterministically applied independent augmentations with
deterministic parameters, set AugmentationParameterSource to 'specify'
and AugmentationMode
to 'independent'
.
In this pipeline configuration, these parameters apply:
Augmentation Method | Parameters |
---|---|
Stretch Time | |
Shift Pitch | |
Control Volume | |
Add Noise | |
Shift Time |
If you specify an augmentation method as a vector, then each element of the vector creates a separate branch in the augmentation pipeline. For example, the following object creates an augmentation pipeline that results in seven separate augmentations:
aug = audioDataAugmenter("AugmentationMode","independent", ... "AugmentationParameterSource","specify", ... "SpeedupFactor",[0.8,1.2], ... "VolumeGain",[-3,-1])
aug = audioDataAugmenter with properties: AugmentationMode: "independent" AugmentationParameterSource: "specify" ApplyTimeStretch: 1 SpeedupFactor: [0.8000 1.2000] ApplyPitchShift: 1 SemitoneShift: -3 ApplyVolumeControl: 1 VolumeGain: [-3 -1] ApplyAddNoise: 1 SNR: 5 ApplyTimeShift: 1 TimeShift: 0.0050
[1] Salamon, Justin, and Juan Pablo Bello. "Deep Convolutional Neural Networks and Data Augmentation for Environmental Sound Classification." IEEE Signal Processing Letters. Vol. 24, Issue 3, 2017.
audioFeatureExtractor
| audioTimeScaler
| shiftPitch
| stretchAudio
You have a modified version of this example. Do you want to open this example with your edits?